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FOREWORD

This is Part II, Volume 1l of a final report prepared by the Research and Ad-
vanced Development Division of the Avco Corporation on USAF Contract
AF33(616)-7578 under Project No. 7360, The Chemistry and Physics of Mate-
rials, Task No. 736001, Thermodynamics and Heat Transfer. The work was
administered under the direction of the Materials Physics Division of the Air
Force Materials Laboratory, Deputy Commander/Research Engineering,
Aeronautical Systems Division. The ASD monitor on the program was Mr.
Hyman Marcus, Chief of the Thermophysics Section.

The present document reports applied research on thermionic cathodes. Arc
column theory, operation in different gases, electrode material investigations
and magnetic field arc column interactions are presented in Part II, Volume 2.
Part I deals with applied research on electric arc plasma generators.

The present volume was prepared by Drs. William Bade and Jerrold Yos, The
program project director was Dr. Richard John. The authors wish to acknowl-
edge many helpful discussions with Mr. Kurt Burkhard and Dr. Peter Neurath.
Mr. John Connors expedited the experimental phases of the investigation with

his supervisory support. Grateful appreciation is expressed to Mr. C. Simmard
for the skill and enthusiasm with which he carried out the experiments. The
photographs were taken by Messrs, John Lupo and David Hamilton. Mr. Leonard
Comeau aided in the analysis of the data.

This document covers work performed between 1 August 1960 and 30 November

1962,
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ABSTRACT

The operating mechanism of thermionic arc cathodes is studied theoretically
and experimentally. A theoretical model is formulated including important
processes in the plasma of the cathode fall zone, at the plasma cathode inter-
face, and in the cathode interior. In principle, this model permits detailed
calculations of cathode performance solely from geometrical considerations

and the physical properties of the cathode material and the gas. An approximate
analysis indicates that the system has two different types of solution, the occur-
rence of which depends primarily upon how well the cathode is cooled. Well
cooled cathodes tend to operate with a concentrated arc spot, while very poorly
cooled cathodes operate without such a spot. Approximate solutions are worked
out in numerical detail for spot-mode operation of a semi~infinite cathode and
spotless mode operation of a thin rod shaped cathode cooled at one end. The
results of a series of experiments on rod shaped thoriated tungsten cathodes
are reported. The theory correctly predicts general trends of these data.

This technical documentary report has been reviewed and is approved.

LEO F. SALZBE;%

Associate Director for
Materials Physics

Air Force Materials Laboratory
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1 INTRODUCTION

A. OBJECTIVES

Electrode phenomena in electric arcs have been studied experimentally and
theoretically by a number of investigators. The literature on cathode and
anode fall voltages, current densities, and operating mechanisms is volumi-
nous. Nevertheless, the design of electrodes for electric arc plasma genera-
tors has been carried out almost entirely on an empirical basis, because
there has existed no experimentally verified quantitative theory capable of
predicting the performance of an electrode of given properties and geometry
operating at a given current in a specified gas.

The development of electrothermal and electromagnetic space propulsion
systems and high-energy wind tunnels for simulation of atmospheric re-
entryl has subjected plasma generator electrode subsystems to requirements
of unprecedented severity. The propulsion applications demand operating
lifetimes of many hundreds or thousands of hours, while arc driven wind
tunnels often call for operation at high currents and pressures with negli-
gible contamination of the gas stream. Rational design procedures based
upon proven theoretical models would facilitate meeting these requirements
and optimizing electrode configurations, or perhaps, in some instances, es-
tablish that the requirements cannot be met with a given type of electrode.
The present report describes a series of investigations whose objective has
been to develop a quantitative theoretical model for one particular kind of
electrode.

Several different types of arc cathode, distinguished by qualitatively different
electron emission mechanisms, have been investigated experimentally.
Carbon, tungsten, and certain other refractory metals operate as cathodes
with high surface temperatures at which the bulk of the observed current
density can be accounted for by thermionic emission. Cathodes of copper,
mercury, and other low-boiling-point metals carry very high current densi-
ties ( > 10 amp/cmz) which cannot be explained on the thermionic hypothe-
sis. The mechanism of the ""hollow' or ''cavity" cathode? is also uncertain.

The present investigation is primarily theoretical in nature, and has been
directed toward elucidation of the mechanism of thermionic cathodes. This
particular problem area was chosen because of the availability of experi-
mental data for guidance during formulation of the theoretical model and for
comparison with predictions of the theory. The data for cold cathodes and
hollow cathodes have been too incomplete and inaccurate to permit fruitful
theory construction; however, this situation is improving rapidly at the
present time.

Manuscript released by authors January 1963 for publication as an ASD Technical Documentary Report.



The discovery that electron emission from a tungsten or carbon cathode oc-
curs by the thermionic mechanism does not constitute a complete solution to
"the cathode problem' for these materials. On the contrary, it provides only
a single relation among the numerous unknown quantities characterizing
cathode operation at a given current; namely, a relation among local electron
current density, local surface temperature, and local electric field strength
at the surface. Standing by itself, the thermionic emission relation throws
little light upon such basic questions as why the cathode sometimes operates
in the spot mode and sometimes in the spotless mode, and why the occurrence
of spot-mode operation depends upon cathode work function, total current, and
gas type. Moreover, without additional relations it is impossible to predict
quantitatively any of the key parameters of cathode performance, such as the
distributions of temperature and current density over the surface and the
total cathode power loss. What is required to investigate these questions is a
complete mathematical model for thermionic cathodes; i.e., a system of
equations which can be solved (given the geometry and physical properties of
the cathode, the type of gas in which it is operating, and the total current)

to yield the surface temperature and current density, the electric field at the
surface, the cathode fall voltage, the ion current fraction, and the net heat
flux to the cathode surface. A crude approximation to such a mathematical
model is developed in the present report.

B. BACKGROUND

The current densities observed on carbon and tungsten cathodes operating in
the spotless mode are of the order of 103 a.rnp/cmz. These current densities
are low enough to be accounted for by assuming thermionic electron emis-
sion from the cathode surfaces at the observed temperatures.® The higher
current densities ( ~ 104 to 10° amp/cm?) observed during spot-mode opera-
tion of hot cathodes can be explained, as suggested by Ecker® and Bauer,6 in
terms of electron emission produced by the joint action of a high surface tem-
perature and a high electric field. The field is provided by the net positive
space charge in the cathode fall region lying between the surface and the
electrically neutral plasma. Lee, ‘"8 and Lee and Greenwood, ? have investigated
this approach in considerable detail with the objective of explaining cathode
phenomena in metal vapor arcs.

A number of attempts have been made to develop comlplete theoretical models
for particular types of cathodes. Weizel and Thouret, O in their "contraction
theory, ' focus attention on processes occurring in the cathode fall zone; i. e.,
the space charge region in the gas adjacent to the cathode surface. They base
their considerations upon the Poisson equation, the equations for electron

and ion current densities in terms of mobilities and the electric field in-
tensity, and the heat conduction equation for the gas. By combining these
relations, they obtain a formula for cathode fall voltage in terms of the

current density, the temperature difference between the cathode and the plasma,

3



the fraction of the current carried by ions, and certain gas properties. This
formula indicates that the fall voltage decreases with increasing current
density; thus, contraction of the column into a cathode spot leads to a low
cathode fall. For excessively small fall zone thickness, some of the assumed
relations break down and the fall voltage begins to increase with further con-
traction. Weizel and Thouret conclude, from the Steenbeck principle of
minimum voltage, that the fall zone on actual cathodes operating in the spot
mode must be of the order of a few ion mean free paths. These authors also
apply the same set of ideas to cathodes operating in the spotless mode, and
conclude that in this case the ion current fraction must be about 0. 03; i. e.,
that the current is carried almost entirely by electron emission.

The Weizel-Thouret theory is not a complete cathode model, since it does not
permit prediction of cathode performance solely from cathode geometry and
cathode and gas properties. To obtain numerical results from this theory, it
is necessary to assume values for some of the unknowns; e.g., current
density and ion current fraction. In essence, this shortcoming is a conse-
quence of these authors' disregard for processes occurring on the surface
and within the interior of the cathode.

Eckers’ & has constructed a complete cathode model which incorporates some
of the physical ideas of the contraction theory. He takes the current density
to be given by the sum of the electron emission current, as determined by the
surface temperature and the electric field at the surface, and the saturation
ion current, which depends upon tke rate of production of ions in the contrac-
tion region and the rate at which the ions can be drawn to the surface. He
considers energy transfer to the surface by ion impact, transfer of neutrali-
zation energy, and heat conduction through the gas. He includes heat conduc-
tion in the cathode interior and assumes that this heat is given up to the
cooler gas outside of the conducting region. The final solution is determined
graphically using what Ecker terms the "E diagram, ' a plot of ion saturation
current and ion defect current versus the contraction factor. The theory
shows that, in general, two or more solutions exist, corresponding to various
degrees of contraction. In other words, the theory predicts operation with
and without cathode spots. Ecker states that, for a given case, the operating
mode ''selected' by the arc is the one with the lowest voltage requirement, in
accordance with the Steenbeck principle.

Ecker's theoretical model successfully accounts for many of the qualitative
features observed experimentally in cathode operation. In its existing form,
however, this theory is not satisfactory as a model for practical cathode de-
sign because the cathode geometry assumed for convenience in obtaining a
solution is very dissimilar to the cathodes used in actual plasma generators.
In addition, some of the physical assumptions employed in the theory appear
subject to some improvement.
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Bauer6 has presented a model for the cathode spot on a spherical, radiation
cooled cathode. He assumes thermal field electron emission from the sur-
face, and obtains an approximate relation between the electron current
fraction and the cathode fall voltage by considering a rough balance between
the power injected into the gas by electrons accelerated through the fall zone
and the power required for production of ions. The power transferred to the
cathode from the fall zone is estimated from the kinetic and neutralization
energy of the ions, and is related to the spot temperature on the cathode by
means of an approximate heat conduction relation. Finally, a relation be-
tween this power and the overall cathode temperature outside of the spot
region is obtained by considering radiative cooling of the cathode as a whole.
This system of equations is deficient by one relation , so that Bauer is only
able to obtain values of the unknown quantities as functions of both current
density and total current. Thus, his attempt toward a cathode model is not
fully successful; nevertheless, it introduces a number of valuable simple ap-
proximations, some of which are employed in the present work.

The most recent cathode model is that of Lee and Greenwood, 9 for the case
of metal vapor arcs. Here again, a complete system of equations is not
presented. Four relations are given for determining five unknowns, in addi-
tion to which the cathode fall voltage is assumed known. However, two
inequalities are presented which set limits to the current at which arcs of
the type considered can operate. One of these inequalities is considered to
be responsible for the phenomenon of ''current chop' in an alternating
current metal vapor arc.

C. PRESENT REPORT

Of the cathode theories summarized above, only that of Ecker is '"complete'
in the sense that, in principle, it permits ab initio calculation of cathode per-
formance solely from geometrical considerations and the physical properties
of the cathode and the gas. The present report presents a new cathode model
which is complete in this sense. This new theory employs a number of rela-
tions used by previous investigators, but focuses attention upon the details of
heat flow in the cathode interior as a determinative factor of hitherto unem-
phasized significance.

Because many of the relations used are crude approximations, this model
must be regarded as only a preliminary formulation. However, it appears to
offer a conceptual solution to the thermionic arc cathode problem. It can be
improved by a straightforward but laborious refinement of its approximations
without significant alteration of its overall structure.

Section II of the report reviews the physical processes occurring in the

cathode fall zone, at the cathode surface, and in the interior. In section III,
a number of rough relations describing these processes are combined to
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yield a complete system of equations approximately describing the operation
of thermionic cathodes. Various approximate methods for solving this system
of equations are considered. Section IV deals with a particular approximate
solution, the quasi one dimensional model, which is applicable to long, thin,
rod shaped cathodes. Section V then describes a series of experiments
carried out with cathodes of this type, and presents a comparison of the ex-
perimental results with calculations based upon the theory. Finally, sec-

tion VI reviews the findings of the present work, and section VII suggests
possibly fruitful lines for further investigation.



II. SUMMARY

This report presents the results of a theoretical and experimental study of the
operating mechanism of thermionic arc cathodes. The principal objective is
'""in the sense
that it permits detailed calculations of cathode performance solely from geo-
metrical considerations and the physical properties of the cathode material
and the gas. If successful, such a theoretical model would have numerous
significant applications, including the design of cathodes with low power loss
and cathodes capable of operating without significant loss of material at high
pressures.

to develop an approximate theoretical model which is '""complete,

The operation of thermionic cathodes is dependent upon processes occurring in
the plasma of the cathode fall zone, at the plasma cathode interface, and in
the cathode interior. These processes are represented, in the present formu-
lation, by approximate relations which in some instances are quite crude, but
which appear to contain the essential physics of the situation. The entire sys-
tem of relations can be considered to define a steady state heat conduction
problem for the cathode interior, with an unusual boundary condition repre-
senting the processes in the plasma and at the surface. An approximate
analysis indicates that the system has two different types of solution, the oc-
currence of which depends primarily upon how well the cathode is cooled.

For a well cooled cathode, the actively emitting region of the surface con-
tracts until the ion current density drawn from the plasma reaches its maximum
value as determined by kinetic theory. This type of solution of the theoretical
model is provisionally identified with the experimental phenomenon of '"'spot
mode' operation. According to the theory, the current density and surface
temperature of a cathode operating in this mode rise with increasing pressure,
leading to cathode failure at the pressure level for which the spot temperature
reaches the melting point.

The other type of solution predicted by the theoretical model occurs only for
poorly cooled (or even heated) cathodes. In these solutions, a large region of
the cathode is at a high temperature and carries current. The ion current
density is less than the kinetic theory maximum. This type of solution is
provisionally identified with '"spotless mode' operation as observed experi-
mentally. The present version of the theory indicates that the cathode tempera-
ture in spotless mode operation should be pressure independent.

Approximate solutions of these types are worked out in numerical detail for
two special cases. Solutions representing spot mode operation are obtained
for a semi-infinite cathode with zero temperature at infinity. Spotless mode
solutions are calculated for a thin, rod shaped cathode cooled at one end and
with the arc striking to the other end. For both cases, the dependence of
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cathode operating parameters upon current, gas type, and material properties
is explored numerically. In the case of the rod shaped cathode, geometrical
factors are also varied.

The results of a series of experiments on rod shaped thoriated tungsten
cathodes are reported. The data are analyzed to obtain estimates of the work
function, thermal conductivity, and electrical resistivity of the material, and
are compared with the results of theoretical calculations based upon the above
mentioned approximate theory for rod shaped cathodes. The data follow the
general trends predicted by the theory, but fail to provide a quantitative test
of the theory owing to occurrence in the experiments of certain phenomena not
represented in the theory.

Detailed recommendations are made for further work on the problems of
thermionic and cold cathodes.



111, PHYSICAL PROCESSES

The present section presents a somewhat detailed discussion of the physical
processes which are likely to be of substantial importance in the operation of
thermionic cathodes. Ecker's recent review article!! treats many of these
topics in greater detail. For convenience of presentztion, the various proc-
esses are categorized according to their sites of action; i.e., according to
whether they take place in the gas, at the surface, or within the cathode in-
terior.

A. PROCESSES IN THE CATHODE FALL ZONE

1. Space Charge

The cathode has a negative potential with respect to the arc plasma, and,
therefore, attracts positive ions toward its surface. At the same time,
plasma electrons are repelled. Thus, a region of positive space charge
exists adjacent to the cathode surface. This space charge region is re-
sponsible, in large part, for the existence of a cathode fall of potential and
of a high electric field at the cathode surface.

These effects are determined essentially by Poisson's equation,

dZU/dx2 = ~ 4me.(n;~n,) (1)
where

U = electric potential

x = coordinate normal to cathode surface

¢ = electron charge

n; = ion density

n, = electron density,

The particle densities n, and n; vary through the space charge layer.
Back diffusion of electrons from the plasma is neglected in the present
discussion, although Eckerl2 has shown that this can be a major effect.
The particle densities are then related to the electron and ion current den-
sities, j. and j;, and the mean velocities of the electrons and ions, ve and
v, by

Ny = jo/eeVe » (2a)



n; = ii/‘evi . (Zb)
If the space charge layer is sufficiently thin that collisions within it can

be neglected (i.e., if the thickness is of the order of a mean free path or
less, as is usually the caselzl, then the current densities je and jj are con-
stant, and the electrons and ions execute free trajectories in the electro-
static field resulting from their own space charge. In this case, all of

the ions at a given distance from the surface have approximately the same
velocity, since the ions start with relatively low thermal velocities at the
outer edge of the space charge layer, and all move in essentially the same
potential field. A similar statement is valid for the electrons emitted
from the cathode surface.

Mackeown, 13 in 1929, obtained a self-consistent solution to Poisson's equa-
tion (1) and the equations of motion for the charged particles in this thin,
collision free layer. His calculation proceeds as follows. Let x denote a
coordinate normal to the surface, with its origin at the surface. The zero
of electric potential is selected to make U = 0 at the surface x = 0. The
thermal energies of the emitted electrons at the cathode surface are always
negligible in comparison with the cathode fall voltage. To a somewhat
poorer approximation, the thermal velocities of the positive ions at the
outer edge of the space charge layer can also be neglected. Then, the
energy equations for the two types of charged particle become

1

= Mvi2 = (V.-UD)e (3a)
(3b)

1 2

?mve = U(c 5

where M and m denote the ion and electron masses, respectively, and V. is
the potential at the outer edge of the space charge layer. Use of (3) to
eliminate the velocities v; and v, from (2) and substitution of the result-
ing values for n, andn; into Poisson's equation (1) give a differential
equation for the potential:

=¥\ §lgearsll
e C
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Since d2U/dx? = -dE/dx = + EdE/dU, where E denotes the electric field in-
tensity, this differential equation can immediately be integrated to give

16
E2 - - [jiMl/z VVe=U + jeml/zx/{l-] + const. (5)

At the outer edge of the space charge layer, U =V, and E has a relatively
low value. Approximating E = 0 at this point, one evaluates the constant
to obtain

16 e

One further integration, which must be performed numerically, gives U as
a function of x; i.e., a relation for the thickness of the space charge zone.
This integral has been evaluated by Mackeownl!3 and by Lee, 7 with results
which are consistent with the original assumption that the space charge
layer has a thickness of the order of a mean free path or less. However,
the details of these results are not required for the purposes of the present
investigation.

Evaluation of (6) at the cathode surface, where U= 0, gives an expres-
sion for the magnitude of the surface field intensity E_,

167er1/2
T O (jiMl/Z—jeml/z) 3 {7)

C
V2
Conversion to practical units gives
B, = any A [(1823W)1/2 ji=is |2 (8a)

or

1/2
E, = 873V 1/4j1/2 [(1823W)1/2 a—(l—a)] = (8b)
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where
\% = potential drop across space charge layer (volt)
j = total current density, j. + j; (amp/cm?)
w = molecular weight of ions (gm/mole)
a = ion current fraction, j; /j.

Small discrepancies between the numerical values appearing in (8) and
those given by Mackeown, and employed by most subsequent authors, are
a consequence of the use in (8) of modern values for the atomic constants.

Unless the ion current fraction « is very small, the term (1823 W)]'/za inequa-
tion (8)is muchlargerthanl - a. In most cases, the latter term can be
neglected to a good approximation, and (8) then reduces to the Child-
Langmuir formula,

E, = s7oowl/dy 174,172 9)

for a space charge layer consisting of particles of a single sign. Physically,
the validity of this approximation follows from the fact that the heavy posi-
tive ions have much lower velocities than the electrons, and thus require a
much longer time to traverse the space charge layer. If the electron and
ion current densities are at all comparable, the density of positive ions thus
greatly exceeds that of the electrons, so that the Mackeown layer is prin-
cipally a region of positive space charge.

2. Ion Production

Figure 1 schematically illustrates the structure of the active region on
a thermionic cathode, as presently understood. The hot, solid surface of
the cathode is separated from the still much hotter quasi-equilibrium
plasma of the positive column by a relatively thin cathode fall zone. The
fall zone, in turn, may be conceptually divided into two regions, The first
of these is the Mackeown space charge layer, discussed above, whose
thickness is only of the order of a mean free path or less.

In the arc column, the current is carried almost entirely by electrons be-
cause their mobility is much higher than that of the heavy positive ions.

In the Mackeown zone, however, energy balance considerations indicate
that a substantial fraction of the current must be carried by ions, as shown
below. Thus, ionization of neutral atoms or molecules must occur in the
intervening region. For this reason, the portion of the cathode fall zone

=1ls
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THERMIONIC CATHODE
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extending from the outer edge of the Mackeown layer to the boundary of
the arc column is designated here as the ion production zone. It occupies
the largest fraction of the volume of the fall zone. A large part of the
cathode potential drop occurs, however, in the Mackeown zone. Experi-
mentally, the cathode fall is of the order of several volts.

The electrons emitted from the surface are accelerated by the electric
field in the Mackeown zone, and thus are injected as a beam into the ion
production zone. The kinetic energy ¢ V. of these electrons is, in most
cases, too low to permit inelastic collisions producing excitation or ioniza-
tion of atoms or ions. The electrons are thus scattered elastically by the
heavy particles but, in general, lose only a little energy per such collision.
However, the beam electrons also collide with electrons already present

in the gas, and as a result the electron velocity distribution becomes
Maxwellian within a few mean free paths from the surface. The directed
motion of the beam electrons is thus destroyed, and these electrons join

the electron gas in the ion production zone. Their kinetic energy is quickly
distributed to a large number of ''gas' electrons, and then transferred

to heavy particles by elastic collisions. Because of the vast number of
collisions occurring in a gas at atmospheric or higher pressure, this trans-
fer is relatively rapid.

The energy transferred from the electrons to the heavy particles is dissi-
pated to some extent by radiation and heat conduction to the cathode, but
most of it is presumably consumed in the ionization of neutral particles.
This idea provides the basis for a simple and useful approximate relation
which has been used previously by Bauer, ® and which is discussed also by
Somerville. 14 Consider the portion of the ion production zone lying above
a unit area of the interface between this zone and the Mackeown space
charge layer. This region receives an energy influx of amount jeV. as
kinetic energy of the electron beam injected from the Mackeown zone. The
energy carried out of the region as potential energy of ionization is i1 -
On the assumption that other energy gain and loss terms are negligible or

cancel one another, these two quantities can be equated to give jo V. =j;V}.
With

ii = aj ’ (lo)

je = (1=a)j , (11)
this relation becomes

V. = aVi/(l1-a) , (12)
or

a= V. /V.+VpD. (13)

Equations (12) and (13) have only qualitative validity, because they
neglect a large number of energy influx and efflux processes affecting the
ion production zone. Some of the energy gain terms omitted are

L=



a. Joule dissipation in the ion production zone, and

b. Energy deposition in the zone by Auger electrons ejected from the
cathode surface and by neutralized ions rebounding from the surface.

The energy loss terms neglected include

1) Thermal energy carried away by electrons diffusing out of
the ion production zone into the arc column, *

2) Heat conducted to the cathode surface,
3) Radiative losses,
4) Energy losses through the side boundaries of the zone, and

5) Energy carried out of the zone by convective motions of the
gas or by a cathode jet.

Several of these omitted terms are difficult to estimate accurately without
a considerable amount of additional work. However, it is clear that equa-
tions (12) and (13) give, at best, a very crude approximation to a much
more complicated relation which could be obtained, in principle, from a
detailed theory of the ion production zone.

In its application to a cathode model, (13) is employed essentially to

give the ion current j; as a function of jo. As j, is increased, more elec-
tron beam energy is supplied to the ion production zone, and neutral atoms
are ionized at a greater rate. It is assumed that all ions thus formed dif-
fuse across the boundary of the Mackeown space charge layer, and then
are accelerated by the strong electric field in that region until they strike
the cathode surface. It should be noted, however, that there is an upper
limit to the ion current density, which would be reached if all of the atoms
in the ion production zone were ionized. This limiting ion current density
can be estimated® in the following way. The ion density in a fully (singly)
ionized gas at temperature Tg and pressure p is given by

= p/ZkTg (14)

(0)Dmax

since one-half of the particles in such a gas are ions. The mean thermal
speed of the ions in any given direction (e.g., normal to the cathode sur-
face) isl5

y = VkT /2aM (15)

‘Bauer6 includes a term representing this process in his equation corresponding to (12) or (13).
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where M is the ion mass. Hence, the maximum ion current density is

. o pce
Uidpas = % Ogax B =——— = (16)

\/BrerTg

In strongly contracted cathode spots, this limit must be rather closely
approached over most of the spot area. Insuch cases equation (13)gives only an
upper limit to the value of j; /j .

PRCCESSES AT THE CATHODE SURFACE

1. Electron Emission

In the arc column, almost all of the current is carried by electrons. Thus,
a source of electrons must exist at the cathode or in its vicinity. Elec-
trons as well as ions are produced, of course, in the ion production zone,
but in arcs of the type under consideration in this report, most of the elec-
trons originate from the cathode itself.

There exist many processes capable of extracting electrons from a metal
surface. 1l A number of these depend upon the impact of energetic particles
such as ions, excited atoms, and photons. Such processes have been in-
voked in several theorieslé’ 17 ¢o explain the operation of cold cathode arcs,
but probably do not play an important role in the case of hot, refractory
cathodes such as tungsten and carbon, whose surface temperatures are so
high that thermionic emission is sufficient to account for most of the ob-
served current.

Electron emission from a metal surface can be produced by a high surface
temperature, a high electric field at the surface, or both. The general
case is designated as thermal field (T-F) emission. 18 Murphy and Goodl9
have presented several analytical approximations, valid in different regions,
for the emission current density as a function of temperature, field inten-
sity, and work function. The general case in which both temperature and
field are large has not been solved analytically, but Lee?-9 has presented
the results of numerical computations for several values of the work func-
tion.

The field intensities for hot cathodes such as tungsten and carbon, calcu-
lated from Mackeown's equation (8), turn out to be low enough (§106
v/cm) that the general T-F emission relation can be approximated with
good accuracy by the Richardson-Schottky formula for field enhanced ther-
mionic emission, 19

-0/Tg (1L7)

jo = AT ¢ ,
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where

6 = 11609¢ - 4.4 \E_ . (18)
Here

A = Richardson constant (amp/cm?2 oKZ)

T, = surface temperature (°K)

¢ = thermionic work function (volts)

Ec = surface electric field intensity (volts/cm).

According to the theoretical derivation of (17), A should be a universal
constant having the value 120 amp/cm? 9K for all materials. However,
Nottingham20 emphasizes that experimental electron emission data are
not accurately represented by (17) in any respect. The experimental
values for A are usually smaller than the above theoretical values, in some
cases by two orders of magnitude or more. The ¢ value required to fit
emission data differs, in general, from the true work function, and is de-
pendent upon temperature, polycrystallinity, and the presence of surface
monolayers. Deviations from linear dependence of In je upon /EJ occur at
low field intensities as well as at high fields, where the approximations
upon which (17) is based break down. For these reasons, equation

(17) must be regarded, in its application to arc cathodes, as a formula
of qualitatively correct form containing two empirical constants whose
values can be selected to fit, approximately, the behavior of any given
material,

2. Heat Transfer

Energy is supplied to the cathode surface by a number of mechanisms, 21
Of these, the most important is ion bombardment. As an ion approaches
the metal surface to within a distance of the order of an atomic radius,

the potential barrier between the interior of the metal and that of the ion

is thinned and weakened until an electron from the conduction band of the
cathode can tunnel through and fall into the ground state of the neutralized
ion. The neutralization energy e, (Vi-¢) is delivered to the conduction elec-
trons of the metal, and may cause Auger ejection of an additional electron
from the cathode. The yield for this ejection process has been determined
by Hagstrum?22 for the inert gas ions incident upon tungsten. It is about
one-quarter of an electron per ion for Het and Net, about one-tenth for Art,
and still smaller for Kr* and Xe'!, In all cases, it is roughly independent
of ion kinetic energy from 0 to 1000 electron volts. Most of the ejected
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electrons have energies in the range from about one-fifth to about three-
quarters of the available energy Vi-2¢, the average energy being roughly

1
< (V-2¢).

That portion of the available energy V,-2¢ which is not carried away by

the emergent electron, as well as the energy given up by ions which fail

to produce an Auger ejection, is presumably dispersed among the conduc-
tion electrons within the cathode near the surface, and thus appears as
heat in the metal. Let y; represent the Auger yield. Then, the average
amount of neutralization energy transferred to the surface as heat, per in-
cident ion, is given approximately by the expression

| 1
A=y (Vi=P) +v; * = (Vi=2¢) = Vi (1 S Yi>‘¢ . (19)

The first term on the left hand side represents the neutralization energy
for that fraction of the ions which do not produce an Auger ejection. The
second term is the amount of neutralization energy which is left in the
cathode for the ions which do yield an ejection. The right hand side, ob-
tained by simple algebraic reduction, shows that the ion neutralization sur-
face heating is reduced, as a consequence of the Auger effect, by about 20
percent in the case of a tungsten cathode operating in helium. For tung-
sten in argon, the reduction is about 7 percent. In an accurate theory,
one would certainly have to include this effect, at least for gases such as
helium and neon, where y; is relatively large. However, in view of the
uncertainties already present in other relations being used, it appears
justifiable to neglect the Auger effect altogether and approximate the heat
flux to the cathode surface due to ion neutralization by

9neut = ii(VI_‘?S) C (20)

The ions bombarding the surface carry kinetic energy approximately equal
to the energy ¢V. which they acquire in falling through the Mackeown
space charge layer. An ion or atom striking a solid surface, in general,
rebounds instead of transferring all of its kinetic energy to the surface.
The fraction of the incident kinetic energy which the particle loses is
termed the accommodation coefficient, denoted here by a. Ecker21 has
reviewed the somewhat contradictory literature on this subject. At ener-
gies in the range of a few volts (i.e., of the order of V.), it appears likely
that a lower limit to @ can be estimated by considering the "billiard ball"
approximation for collision between the ion and an individual atom of the
metal surface. This approximation gives, from consideration of energy
and momentum conservation for a head on collision,

6 = AW _W/(W +W)2 (21)
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where W; is the molecular weight of the ion, and W. the atomic weight of
the cathode material. In the event of a glancing collision, less energy is
transferred in the initial collision, but the ion is very likely in this case

to collide with a second metal atom before escaping fromthe vicinity of the
surface. It is assumed that the ionic mass is less than the atomic mass
for the cathode material; in the opposite case, a should be essentially equal
to unity.

Table 1 lists values of a& calculated from (21) for a number of ions,
assumed incident upon a tungsten surface (W, = 183.9). The accomoda-

tion coefficient, calculated in this approximation, is very low for helium

and other ions of low mass, but approaches unity as the ionic mass approach-
es the mass of the cathode atoms

TABLE 1

ACCOMMODATION COEFFICIENTS FOR ION IMPACT
UPON TUNGSTEN
(BILLIARD BALL APPROXIMATION)

Ion v, a

Het 4.0 . 08
Ne®t 20. 2 .36
Art 39.9 .59
Krt 83.8 .86
Xet 131.3 .97
Nt 14. 0 . 26
N,* 28.0 . 46

The portion of the ion kinetic energy which is not transferred directly to
the surface is carried by the rebounding atom back into the ion production
zone, where it is given up to ions and other atoms by collisions. This
energy transfer occurs within a few atomic mean free paths from the sur-
face, and has the effect of raising the temperature of the neutral gas near
the surface. As a result, the temperature gradient in the gas in this re-
gion is increased, and at least some of the additional heat thus deposited
in the ion production zone should flow back to the surface by heat conduc-
tion. It is assumed, for the sake of simplicity, that this process brings
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all of the rebound energy back to the surface; i.e., that the net heat flux
to the surface due directly or indirectly to transfer of ion kinetic energy is
given by

UYin = JiVe - (22)

An upper limit to the heat flux reaching the surface by conduction through
the gas can be estimated using kinetic theory. The number of ions and
neutral particles striking unit area of the surface per second is np ;i , where
n, is the density of heavy particles in the ion-production zone, and q; is
given (15). The thermal energy carried by each such particle is

3kT8/2, of which a fraction a is transferred to the surface. Thus,

p kTg 3kTg 3ap kT&
qk & . . a = = (23)
e sz 2nM 2 2 27M

With T, ~10%4 °K and @ ~0.6, this gives an upper limit of about 5000 w/cm?
for argon at 1 atmosphere pressure.

Since the ions and neutral particles in the ion production zone are assumed
to he inthermal equilibrium with each other, and since the masses are equal,
the thermal velocities are the same and the number of particles of each type
entering the Mackeown layer from the ion production zone is proportional
to the corresponding particle concentration. Most particles of either type
which cross the interface between the two zones eventually reach the sur-
face. The accommodation coefficients for transfer of kinetic energy should
be about equal. The ions, lhowever, have much more kinetic energy than the
neutrals, because the former are accelerated in passing through the
Mackeown zone. In addition, the ions transfer most of their neutralization
energy V- ¢ to the surface. Consequently, each ion hitting the surface
delivers an amount of energy which is at least one or two orders of magni-
tude larger than that transferred by a neutral particle. It follows that ion
bombardment heating is always more important than heat conduction, pro-
vided that the gas in the ion production zone is substantially ionized (more
than about 10 percent). This is certainly the case for the high current
densities associated with spot mode operation. It may conceivably not be
the case for low current operation without a cathode spot. To determine
the answer to this question in general, it would be necessary to construct

a detailed theory of the ion production zone. It is assumed in the present
report that cathode heating by conduction through the gas is negligible in
comparison with ion bombardment heating. Radiative heating and combus-
tion of the surface are also neglected. The total heat flux to the cathode
surface is then estimated to be, from (20) and (22),
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dneur * kin = Ji(Ve+ Vi—9) . (24)

The energy deposited in the cathode surface is disposed of by several
mechanisms. The bulk of this energy is consumed by thermionic emission
of electrons. Extraction of one electron from the surface by '"pure' ther-
mionic emission requires an energy of ¢ electron volts, where ¢ is the
thermionic work function. If an electric field producing the Schottky effect
is present, this energy requirement is reduced, approximately, to the
value of the '"effective work function'':

bet = - 379x1074 JE. . (25)

Calculations by Lee® show that the actual cooling energy per electron
emitted varies with temperature as well as with electric field intensity,

so that (25) is only a rough approximation, even in the region of field
strengths where the Richardson-Schottky formula (17) is a good approximation
to the exact T-F emission function. Lee's calculations indicate that at a
temperature of 3000°K and a field of 107 v/cm, the cooling effect is about
15 to 20 percent less than it would be in the absence of a field. Since it
has been necessary to make several other relatively crude approximations,
this correction to the cooling effect of electron emission will be neglected
in the present report. The heat flux absorbed by electron emission is then
approximated simply by

9ol = Je® - (26)

The input energy remaining after allowance for the power requirement of
electron emission is partly lost by thermal radiation,

i, ST 5 (27)

and partly conducted into the interior of the cathode,
q = K (dT/dn)g . (28)

Here

Stefan-Boltzmann constant (5. 67 x 10-12 w/cm2 °K4)

Q
1

~
]

total emissivity of surface
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T, = surface temperature (°K)
K = thermal conductivity of cathode material
dT/dn = derivative of cathode temperature along an outward directed

normal to the surface (°K/cm).

Under some circumstances, an additional amount of heat is absorbed by
vaporization of the cathode material, but this plays little role in the case
of tungsten, which is the principal concern of the present study. Certain
other processesZI can become significant in some instances.

Combination of equations (24), (26), (27), and (28) now gives the energy
balance relation at the cathode surface,

ji(Ve +Vi=) = jod + K (T/dn), + oeT A . (29)

Substitution of j; = aj, je = (1-a)j gives

ila(Ve + VP = ¢] = K(T/dn)g +o0eT 4 . (30)

Finally, for cases in which j; <(;) elimination of a using (13) yields

max’

j(Ve = ¢) = K(IT/dn)g + oeT 4 . L)

In (30} or (31), the net electrical heating effect is represented by the
expression on the left hand side, while the terms on the right hand side
correspond to purely thermal effects.

Equation (30) provides the basis for a rough estimate of the ion current
fraction a for thermionic cathodes. Since the active region of the cathode
is at a high temperature, it loses heat by conduction and radiation; thus,
the right hand side of (30) is positive. Solution of (30) for a yields

1 K(@T/dn)g + 0eT A

a = — | ¢ + - g (32)
V‘:+VI ]

Thus, @ has a lower limit of
amin = qS/(Vc + VI) N

which with ¢ ~4 volts, V.~ 5 volts, Vj ~ 20 volts gives ap;;~0.16. The pres-
ence of the second term in the bracketed expression of (32) makes the
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actual @ value somewhat larger than this. This argument shows that a
much larger fraction of the current is carried by ions at the surface of the
cathode than in the arc column. 23

Thus far, attention has been paid only to processes occurringon the elec-
trically active portion of the cathode surface. Over the remainder of the
surface, there is no electrical heating. Heating by radiation from the arc
or from other hot surfaces in the system may occur, but, if so, will depend
to a major extent upon the details of the plasma generator configuration.
The same may be said of convective heating by arc heated gas flowing over
the cathode surface. These effects will not be considered further.

Energy losses occur from the entire exposed surface of the cathode, and
play a role of considerable significance. The radiative loss is, of course,
a flux oeT4 where ¢ is the total emissivity, and T the local surface tem-
perature. The convective loss is less readily calculable, since it depends
upon the distribution of gas temperature and velocity in the flow field near
the cathode. These quantities are strongly dependent upon the plasma
generator configuration and are difficult to calculate or to determine ex-
perimentally. In general, the convective loss should be larger, under
otherwise identical conditions, when the cathode is operated in a gas of
high thermal conductivity such as helium or hydrogen.

PROCESSES IN THE CATHODE INTERIOR

1. Heat Conduction

For a thermionic cathode to operate, a portion of its surface must be
maintained at high temperature. Heat then flows from this hot region to-
ward the cooler regions of the cathode. The steady flow of heat in a solid
with no interior sources or sinks is governed by the partial differential
equation,

Vv « KYT) =0 , (33)

where K denotes the thermal conductivity. If K is independent of position,
(33) reduces to Laplace's equation

viT =0 . (34)

Equation (33) or (34), of course, has an infinite variety of solutions.
Determination of the solution T (x,y,z) describing a particular physical
situation, such as the temperature field in a certain cathode, requires the
specification of an adequate set of boundary conditions. The steady heat
flow problem for a thermionic cathode has ordinary fixed temperature

T



and radiative cooling conditions over certain portions of the surface, and
the boundary conditon (29) or (31) over the region where flow of
current is possible.

2. Joule Heating

Not only heat but also electric current flows in the interior of a cathode.
The flow of current produces a distributed source of resistive heating
throughout the interior with the magnitude pj2 per unit volume, where p

is the resistivity of the metal (a function of temperature), and j the current
density. Equation (33) is, thus, replaced by24

V. &VD +pj? =0, (35)
The current density is a function of position and is not 'given, " but is part

of the solution of the problem. It is a vector determined locally by Ohm's
law

i=Ep , (36)

where E denotes the electric field vector, which in turn is equal to the
negative gradient of the electric potential function,

E=-vVU. (37)
Since no sources of current exist in the cathode interior, | is solenoidal,
¥ o= \Y = \%¢) 0 (38)
. | = - . = .
p(T)

One is thus confronted with a system of two coupled partial differential
equations (35), (38).

Rich25 has obtained an approximate solution to the problem of Joule heating
in the vicinity of a cathode spot, by assuming p = constant and a uniform
current density over a circular portion of the surface of a semi-infinite
body. His results show that for hot tungsten (p~100 x 10-6 ohm-cm) with
a current density of 10° amp/cm?, the Joule power in the spot region is
about 106 a3 watts, where a = spot radius (cm). The current is 1027a2.
Thus, the voltage associated with Joule heating under these conditions is
about 3a volts. A current of 1000 amperes with the assumed current density
would require a spot size of only about 0. 06 centimeter, so that this effec-
tive voltage is small (~ 0. 2 volt) even for the rather severe case assumed.
It may be concluded that Joule heating in the spot region is negligible for
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thermionic cathodes. This outcome is a consequence of the fact that radial
spreading of the current causes the power density pi2 to decrease extremely
steeply with distance from the spot, so that the volume in which significant
heating occurs is very small.

If the cathode is not effectively semi-infinite, but is a rather long thin body
with axial current flow, Joule heating can become very significant at high
total currents, because a moderate power density is produced throughout
the entire volume of the cathode. The theory of Joule heating of long,
cylindrical tungsten cathodes is developed in section IV below.

sl



1IV. THEORY OF THERMIONIC CATHODES

A. PHENOMENOLOGY

The variety of behavior exhibited by cathodes is impressive. Even a single
cathode, simply observed visually, presents a bewildering sequence of qualita-
tively different appearances as its environment and operating current are varied.
In a given gas, for example, at low currents, a tungsten cathode may operate in
the spot mode with a high current density. An increase of current beyond a
certain level causes transition to the spotless mode, with a lower current den-
sity. An increase in pressure brings back the spot. Operating in a different
gas at the same pressure and over the same range of currents, the cathode may
run either always in the spot mode or always without a spot. This richness of
phenomenology presents a severe and interesting challenge to any theoretical
model which may be proposed.

Apart from qualitative features such as those just mentioned, a successful
theoretical cathode model must predict quantitatively the observables of cathode
operation. For a given total current, these include the cathode fall voltage,

the power losses from the cathode by radiation and heat conduction to the cooling
system (if any), the temperature distribution in the cathode, and the distribution
of current density over the surface. In the absence of significant radiative or
convective heat transfer from the arc column to the cathode, this prediction
must be based solely upon the cathode geometry and the physical properties of
the cathode and gas.

B. OVERSIMPLIFIED MODEL

The cathode model presented below (section III C) is, in spite of the crudity of
many of its approximations, a fairly complex mathematical construction. To
clarify some of the basic ideas before undertaking a discussion of the complete
problem, the present section considers an oversimplified model for which the
analysis is elementary. This model is defined by the following assumptions:

1. The cathode is a cylindrical rod of diameter D and length L, one end

of which is held at a low temperature T,. The other end is operating as a
cathode spot with a uniform current density.

2. The electron emission is purely thermionic (no Schottky effect).

3. Joule heating and radiative energy loss from the surface are neglected.
The current emission does not '"overflow' down onto the curved side surface

of the cathode.

4. The thermal conductivity is a constant.
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It is virtually certain that no cathode satisfying these assumptions even roughly
can be constructed. This model is presented solely to illustrate a few of the
fundamental features of the more realistic cathode theory formulated in the
next section.

One parameter characterizing the operation of a cathode can always be chosen
arbitrarily, at least within certain limits. For the oversimplified model, the
total current I can be specified. Then, the current density is

j = 41/nD? | (39)

The current density, in turn, is related to the surface temperature Tg of the
active end of the cathode by Richardson's equation,

- 11609¢/T
jo = (1-a) j = AT e Wiy ) (40)

where a denotes the fraction of the current carried by ions. This quantity is
given approximately by (13),

Ve

a= —— , (41)
Vc+VI

in which the ionization potential Vj is known. However, V. is not yet known and
does not appear in (40). At this stage, there are three unknowns, a , T,
and V., and only two equations, (40) and (41). It is now necessary to invoke

the surface energy balance relation (31),

j(Vo—¢) = K (dT/dn)g - (42,

The temperature gradient on the right hand side must be determined from the
solution of Laplace's equation (34). Under the assumptions of this over~
simplified model, the heat flow is one dimensional, and hence (34) becomes

d?T/dx? = 0

' (43)
with the boundary conditions
T(0) = Ty (44)
T(L) = T, = {45)
The solution of (43) satisfying (44) and (45) is >bviously
T = Tp + (Tg = Ty (/L) . (46)
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Hence,

@T/dn)g = (Tg — Tp)/L . '47)

Substitution of (47) into (46) gives

j(Ve = ¢) = K(Tg = Te)/L . (48)

Equations (40), (41), and (48) now provide a system of three equations
for the three unknowns a , T, and L

From (41)

Vi
lea =2 ———— .
VC+VI

Hence, (40) becomes

) Vi
V. = -V . (49)

> -1160 T
ATsz e S/ T

Equation (48) can be rewritten

K (Tg - Tp)
Ve b+ — (50)
The pair of equations (49), (50) can be solved for Ve and Tg by a_graphical
procedure, as illustrated in figure 2 for the case j= 1000 amp/crnz, Vi = 15volts,
A =120 amp/cm? K2, ¢ = 4 volts, K= 1 w/cm °K, Ty = 300°K, andL = 3 centi-
meters. The solution for this particular case is V. = 4.97 volts, a = 0. 249,

Tg = 3240°K. The corresponding net heat flux to the surface is 980 w/cm?.

It is worth noting that to determine the solution, even for this extremely simple
model, it is necessary to use relations describing processes in the ‘gas, in the
cathode interior, and at the interface. Thus, the operation of a thermionic
cathode depends upon phenomena in both the solid and the gas and upon the
coupling between the two regions across the interface.

The system of equations (49), (50) is sufficiently simple that one easily sees
qualitatively how the solution depends upon various parameters. For example,

a change in L affects the slope of the straight line representing equation (50)

in figure 2 without modifying the curve for (49). The latter is so steep

that a substantial change in L produces only a slight alteration of the temperature
T, for the solution, although the cathode fall voltage V. changes considerably. For
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this model, at least, stronger cooling of the cathode (achieved by reducing the
length), thus accomplishes very little by way of reducing the temperature which
the material must endure without melting. Of course, this is a consequence of
the fact that most of the cathode current is carried by electrons emitted therm-
ionically. The stronger cooling achieves its slight reduction of tip temperature
at constant current by increasing the ion current fraction a, so that the require-
ment for electron emission is reduced a little. The additional ion current thus
drawn from the gas naturally increases the heat flux to the cathode. The extra
heat flux can be handled by internal heat conduction, because the shortening of
the cathode with little change in tip temperature has increased the axial tempera-
ture gradient.

C. THEORETICAL MODEL FOR THERMIONIC CATHODES

The relations set down in section II to describe the processes occurring in the
gas region, in the cathode interior, and at the interface between these two regions
provide the basis for an approximate but complete mathematical model for therm-
ionic cathodes. The central feature of this model is the heat conduction problem
for the cathode interior. The present section formulates and discusses this
cathode model for the case in which Joule heating in the cathode interior is
neglected. It has been shown in paragraph 2 of section II C,on the basis of
Rich's25 results, that Joule heating contributes little to the heating of a therm-
ionic cathode operating in the spot mode, and omission of this effect simplifies
the formulation of the problem considerably. When Joule heating is neglected,
the differential equation for the temperature distribution within the cathode is

(33)

V. YT =0 . (51)

To discuss the boundary conditions for this equation, it is necessary to introduce
some notation for providing a generalized description of the cathode geometry.

The bounding surface of the cathode can be divided conceptually into three
portions, Sy, Sy, S3:

Sk Interface between cathode and external cooling system.

Sy "Inactive region''; i. e., surface through which no current can flow
because of geometrical separation from anode.

S3: "Active region''; i. e., portion of surface through which current
can enter the cathode from the arc column. The entire region S,
need not be covered by current flow however. The actual cathode
spot may be much smaller than s;.
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Possible ways of dividing the cathode surface into these three regions are il-
lustrated for several cases in figure 3. The dividing curve between S, and
S3 is rather arbitrary in most cases. For the geometries (c) and (d) of figure 3
S; can be omitted.

The boundary conditions on the temperature field within the cathode can now be
formulated with reference to this division of the cathode surface into regions.
This formulation of the boundary conditions is not necessarily applicable to all
geometrical configurations, but is reasonably general and can be modified
readily to treat special cases.

It is assumed that the material in contact with the cathode over the region S; of
the surface is an excellent thermal conductor, such as copper. Then, §; is a
surface of constant temperature to a good approximation, and the boundary
condition over this region is

T = TO on Sl . (52)

Over the region S,, by assumption, there is no current flow. Hence, there is
also no surface heating by ion bombardment. It is assumed for the present
formulation that radiative heating of the surface and convective heat exchange
between the surface and the gas can be neglected, although this is not always
the case. Then,

JoT
K <—> O S, (53)
dn /

where d/dn denotes the outward directed normal derivative.

In the ''active region'' S3, the boundary condition is considerably more compli-
cated because it involves relations pertaining to the cathode fall zone and the
electrical heating of the surface. The condition in this region is essentially
equation (29),

aT
K<——> =y (V, + V= @) = job = oe Tt onsy . (54)
S

on

However, (54) contains the ion and electron current densities, which are
not '"given'' but are part of the solution of the problem. The electron current
density is related to the local surface temperature Tgand field intensity E. by
the Richardson-Schottky equation (17),

-6/T
oo AT SE T P (55a)
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Here,

= 11609 ¢ — 4.40 VE_ , (55b)

and E, is given by Mackeown's formula (8a)

E. = 873 VM4 [as2sw)l/2 j, — i 1/2 | (56)

The ion current density j; is represented by

j; = min [aie/(l—a)v LG 1 T (g i

where min (x,y) = x or y, whichever is smaller; a is given by the rough energy
balance relation ‘13) for the ion production zone,

a= VSV, + V) ; (58)

and (j; )pax is the upper limit to the ion current density based on kinetic theory,
equation (16),

(Dmax = V8rMKT,

(59)

The gas temperature T; in the ion production zone is roughly equal to 0. 15

Vi/k if the gas in that zone is just fully ionized. The idea expressed by equa-
tion (57) is that the power jeVe brought into the ion production zone by the
electron beam emerging from the space charge layer is all consumed in pro-
ducing the ions which flow to the cathode, unless the ion current has reached
its limiting value (j; )yax ,in which case the excess power j, V. - j;V[ is simply
lost by unspecified mechanisms. Actually, some of this excess power is likely
to produce extra ions in neighboring parts of the ion production zone where the
electron current density is not so high, and one could with equal justification
use other approximations in place of (57).

In this formulation, the quantities (9T/ dn) g, Tea dys Jev @5 E. are functions of
positon over the surface region S3. The cathode fall voltage is taken to be
independent of position over the emitting region, since it is the potential dif-
ference between two good electrical conductors, the cathode and the plasma.
According to equation (58), a is, then, also constant. The ratio ijlie is
constant, from (57), except in the region (if any) where j; = {ji Jmax+ The

total current is given by the surface integral of the total current density,

i A



1= e + ipds - (60)
53

One of the position independent parameters of the problem, such as the total
current, can be selected arbitrarily. For the following discussion, it is
convenient to let this arbitrary parameter be V. instead of 1. If V_is given,
then ¢ is known from (58). At each point of the surface S3, there are then
six unknowns Tg, [9T]0n ), s Jau Jis Eow O which are related to one another by
the five algebraic relations (54) to (57). These relations :an be solved

for (dT/dn )  as a function of T,

q, = K@T/dn)g = F(Ty) . (61)
A rapidly convergent numerical procedure for computing values of this function
is described in appendix A. Figure 4 illustrates the form of the function for
a cathode with the thermionic constants ¢ = 3.5 volts, A = 120 amp/cm ° K&
operating in argon at 1 atmosphere. (The ordinate in figure 4 is the net
electrical heat flux, K (dT/dn)g + oe ’I‘S4 , rather than F(T,) itself.) Figures

5, 6, and 7 show the ion, electron, and total current densities based

upon the same calculations. Comparison of figures 4 and 5 shows that

the maximum electrical heat flux occurs at the temperature for which the ion
current density reaches its maximum value. Below this temperature, the ion
current is proportional to the electron current, and thus increases with in-
creasing temperature. The increase of ion current is responsible for the in-
crease of heat flux which occurs in this region. Above the temperature at
which j; reaches (j; )paxs the ion current is constant while the electron current

continues to increase with temperature. The resulting increase of the cooling
effect of electron emission without any compensating increase of ion bombard-
ment heating produces the decrease of heat flux shown in figure 4.

The reduction of equations (55) through (59) to the single relation (61)
makes it possible to summarize the cathode problem concisely as follows:
Find solutions of the partial differential equation,

V. VT) =0 , (62a)

satisfying the boundary conditions

T =T, on S (62b)
JT 4

oeT
an =i K on SZ (62(:)
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ot F(T:Vo)
= onS, ,
dn K 3

(62d)

where d /dn denotes the outward directed normal derivative, and F (T; V.) is a
positive, nonlinear function of local surface temperature of the general form
illustrated in figure 4. F (T; V.) depends parametrically upon the cathode
fall V.. The cathode fall is regarded as an input parameter. Assuming that (62)
has been solved for series of V. values, the total current I can be
computed from {(60) for each case, giving I = I (V.). Inversion of this
relation gives V.= V. (I), so that one can obtain the temperature distribution,
current density distribution, and other quantities of interest as parametric
functions of total current.

The system of equations (62) represents an unusual type of heat conduction
problem which does not appear to have been considered previously in the lite-
rature. In general, two or more solutions may exist for any given set of input
conditions, corresponding to different modes of cathode operation. The possible
nonuniqueness of solutions can be illustrated by considering a physically unreal
but mathematically acceptable case of (62), in which the cathode is a circular
cylinder of length L, S; is the circular area of one end and S3 that of the other,
and S, is the curved side surface. The emissivity ¢ and end temperature T, are
assumed to be zero. Depending upon the value of L, the problem thus defined
may have one, two, three, or more solutions. Some of these are one dimensional
solutions of the form T = T, x/L, where Tg is obtained by solving the equation

o
=Y (63)

This is the form to which (62d) reduces in the case of one dimensional heat
flow in a rod with zero temperature at one end. Figure 8 illustrates the
graphical solution of (63) for a particular value of V.. The F(Tg) curve in
this figure is identical with the curve for Ve = 10 volts in figure 4. Figure 8
shows that (63) always has at least one solution Tg= 0, corresponding

to T= 0 throughout the cathode. In this case, the cathode is not operating. If
L is not too small, the straight line q, = KT, /L intersects the curve 9 = F(IQ
in two points (see figure 8). The point lying at a lower value of T, cor-
responds to a cathode mode in which the ion current is less than Ci Vaawe THE

higher point represents a mode with much higher current density for which the
ion current has essentially reached its limiting value. If L is too small, the
line q¢ = KT/L passes above the peak of the curve for F(Tg), and there is no
nonzero one dimensional solution for the given cathode fall voltage. Solutions
can still be obtained, however, for higher V.. In addition to these various one
dimensional solutions, the problem may possess non one dimensional solutions
in which the current flow is contracted into a spot on the end of the cathode.
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The mathematical techniques for treating problems of the type of (62) are

not well developed at the present time. The most important lack is that of a
practical numerical procedure, adaptable to machine computation, for obtaining
axisymmetric and three dimensional solutions. However, a number of ap-
proximate methods for solving the cathode heat conduction problem are considered
in subsequent sections.

D.

APPROXIMATE METHODS OF SOLUTION

1. Numerical Methods for Two and Three dimensional Problems

A numerical method for high speed digital computation of solutions to the
cathode model (62) is needed for investigating the mathematical conse-
quences of the theory and testing its predictions against experimental data.

If the theory, or some modification of it, proves to be approximately valid,
such a computation technique will also be required for applications to cathode
design studies.

The standard methods for numerical solution of elliptical partial differential
equations do not appear to be directly applicable to (62), because of the
peculiar nature of the boundary condition (62). The function F(T) is

so strongly varying (see figure 4) that it tends to amplify greatly the
effects of any errors in the surface temperature distribution. This tendency
probably will lead to instability and convergence failure in any iterative
numerical process which does not contain a special stabilizing feature.

It appears that the most suitable method for stabilizing a numerical solution
of (62) may be to take the total current I as the input parameter in place
of the cathode fall voltage V.. This, of course, entails some inconvenience
in the computation because the algebraic structure of equations (54)
through (59) practically requires that V_ be retained as an intermediate
parameter. However, holding I constant during a series of successive ap-
proximations at least ensures that the calculation will not skid off toward
some extreme cathode operating condition with zero or infinite current.

Use of I as the independent input parameter also practically rules out some
techniques of solution such as the relaxation method, in which the temperature
distribution throughout the body is adjusted piecemeal. The total current

is given by an integral (60) over the active region of the surface, and,
thus, refers to a single complete temperature distribution. What thus
appears to be suggested is a method of successive approximations to the
entire temperature distribution, starting with a rather arbitrary trial
function. Assuming that the procedure converges, one might, then, hope to
find solutions corresponding to various cathode '""modes'' by choosing dif-
ferent trial functions. Two approaches of this type are suggested here.
Neither has actually been tried. Testing and developing either of these
methods will require a major programming and computing effort.
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The first suggested method presumes the existence of a program for solving
equation (62a) with mixed Dirichlet-Neumann conditions. It proceeds
by iterating the following sequence of steps:

a. Choose a trial function* T(r,z).

b. Using the temperature given by this function at the surface in
region S3, solve for the V. value required to give total current I.

c. Using this V_, calculate the surface heat flux distribution over
S3 using (62d). Also, calculate the heat flux over S, using (62c).

d. Solve V°* (KVT) = 0 with the boundary conditions that T is prescribed
on S; and JdT/dn is prescribed (from c above) over S, and S3 .

e. Go to (b) above.

A second plausible looking procedure for solving (62) is to obtain solu-
tions to this steady state problem by following the evolution of a corresponding
solution of the transient heat equation

V « (KVT) =8c dT/o¢ (64)

to late times. The boundary conditions in (64) are again (62a,b,c,d)

The total current is taken as an input parameter and held constant in time.
This requires that the cathode fall voltage V. be adjusted at each time step
of integration of (64).

Both of these procedures will require relatively large amounts of machine
time per case. The approach through the transient problem is likely to be
exceptionally costly in this respect, so that alternatives such as the first
method suggested above should be explored thoroughly before a solution by
this technique is tried.

2. Approximate Relationships for the Cathode Heat-Conduction Problem

Although the cathode heat conduction problem (62) is quite difficult to
solve accurately, the general nature of the solutions can be seen rather
clearly from simple qualitative considerations. A general discussion of
this type of heat conduction problem is given in the present section, and
approximate conditions are derived relating the nature of the solutions to
the form of the assumed heat input function q(T). In the following section,
the results of this analysis are applied to the actual heat input function q(T)
defined by equations (54) through (59) to obtain an approximate

solution for the properties of the cathode burning spot for a particular

cathode geometry,
*The notation in this discussion assumes the case of an axisymmetric problem.
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The discussion can be carried out most simply by choosing a semi-infinite
cathode geometry with the boundary condition that the temperature goes to
a fixed value T, at infinity. The parameter T, then represents the
strength of the cooling applied to the cathode. The effects of a finite
geometry can be simulated qualitatively by choosing T, in such a way as
to reproduce the actual boundary conditions on the cathode as well as pos-
sible. For example, if the actual cathode has typical dimension R and the
surface is held at temperature T}, then T, would be chosen so as to give
a temperature T; at the distance R from the center of the spot. Thus, a
long, rod shaped cathode of the type to be discussed in section IV below
would be simulated by a large positive value of T, while a small, strongly
cooled cathode would correspond to a negative Tj.

For the semi-infinite cathode with T = Tjat infinity, the boundary conditions
(62b,c,d) on the cathode temperature distribution become

T =T, at infinity
K9dT/dn = q(T) on the cathode surface, (65)

where q (T) is a specified function of surface temperature which depends
parametrically upon the cathode fall voltage V_. The latter quantity may
be regarded as the independent variable for the problem, in place of total
current, as discussed above. The general nature of the solutions can be
studied by conceptually dividing the surface into a cathode spot region of
radius ry in which the heat input q is appreciable, and an external region
r > rg in which the heat input is negligible. The total heat input to the
cathode per unit time is, then, approximately

Q = #r .2 q(T,) (66)

where T,_, is the average spot temperature. A second relation between
these parameters is furnished by the heat flow relation outside the spot
region. On the assumption of radial heat flow in the external region, the
differential equation (62a) for the temperature distribution becomes
simply

272K 9T/dr =-Q . (67)

Integration of equation (67) gives, with the aid of the boundary condition
atr = oo,

Q = 2nKrg Ty —Tg) - (68)

Relations analogous to (68) have been derived previously by a number
of authors®s 11,26 for various cathode geometries, using arguments similar
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to those given here. Elimination of Qfrom equations (66) and (68)

gives a relation between the spot radius r, and spot temperature T,y » Which
must be satisfied approximately by any solution of the cathode heat conduction
problem (62).

Equations (66) and (68) do not, however, exhaust the conditions which
must be satisfied by the temperature distribution in the cathode. The initial
assumption that the heat flux is appreciable for r < rg, and inappreciable

for r > r, remains to be formulated. This assumption requires that the
temperature gradient across the spot, in combination with the known
dependence of the heat flux q on temperature, must be just sufficient to cut
the heat flux essentially to zero at the edge of the spot, r = tg . This
condition can be represented symbolically by

TEIE T (69)
where T(rg) is the actual temperature at the edge of the spot, and T. is the
cutoff temperature, defined as the temperature for which the heat flux

q(T.) becomes negligible in comparison with the average heat flux q i
over the spot. T. is, of course, in general a function of T,,. There is
evidently some arbitrariness in the choice of the cutoff temperature Tes
just as there is in the spot radius r, ; however, if q(T) is a sufficiently
strong function of T, this arbitrariness leads to only a small uncertainty
in the numerical value of T_.

If the function q(T) can be approximated by a straight line over the range
of temperatures occurring in the spot, it is possible to give a more explicit
formulation of (69). This type of approximation is applicable, for
example, to the rising part of the heat flux curve defined by equations (54)
to (57) and illustrated for a special case in figure 4. The

linear approximation to q(T) is given by the first two terms of its

Taylor expansion, q(T) = q(T,,) + q" (T,,) (T - T,,). A logical choice of
the cutoff temperature, based upon this approximation, is the temperature
for which this expression gives q= 0. Then equation (69) becomes

q'(T,,)

_ 70
(T e

H
R
o

where AT is the temperature difference across the cathode spot. A rough

estimate of AT may be obtained by taking AT = rg, (dT/dr ), » where

s

(dT/dr), is the surface temperature gradient at the edge of the spot, as
S

given by equation (67). Eliminating Q using (68), one finds in this
way that

AT® QRekr, = T — Ty § (71a)
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i.e., the temperature difference across the spot is of the same order of
magnitude as the temperature difference between the spot and the cooling
system. Since the surface temperature gradient dT/dr is actually not
constant across the spot, but increases from zero at the center to a maxi-
mum absolute value at the edge of the spot, the estimate (7la) is proba-
bly somewhat too large and should be replaced by a relation of the form

AT= y(T,, = Tg) . (72)

where y is some constant of value less than unity. A uniform variation of
dT/dr across the spot, for example, would give y = 1/2.

Another estimate of AT can be obtained by assuming a uniform heat flux
over the spot area and no heat input outside the spot. An analytic solution
for the temperature distribution in this case?? gives the relation

2 1
AT = < - —> [T - Tyl —3(Tav - Ty (71b)
w

where T(0) is the temperature at r = 0. Since for the linear approximation
to a (T) considered here the heat flux actually increases toward the center
of the spot, equation (71lb) probably represents a lower limit for AT.

It may, thus, be concluded from (71a,b) that the constant y in equation (72)
lies within the range

1
< piEd 5 (73)

3 = P2

the most likely value being about 1/2. Substitution (72} into (70) gives the

approximate condition

q’(Tav) 1
S SR, B, S (74)
Q(Tav) av 0 ,y

which must be satisfied by the spot temperature T,, for cases in which the
heat flux function q(T) can be approximated reasonably well by the first
two terms of its Taylor expansion.

Equation (74) is a condition on the possible operating temperatures T,

of the cathode spot. The quantity q” (Tay) (Tay - Tg)/ 4 (Tay) appearing in

the left hand side of the equation is termed the ''steepness' of the heat flux
function. In general, of course, the steepness is a function of spot tempera-
ture. Solutions of the cathode heat conduction problem can exist only for
spot temperatures such that the steepness is exactly right (i.e., equal to
1/y).
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The possibility of a relationship between the formation of cathode burning
spots and the steepness of the dependence of heat flux q upon surface
temperature was apparently first suggested by Bauer. 6 He pointed out that,
because of the very strong dependence of thermionic emission on the surface
temperature, any nonuniformity in temperature over the cathode surface
would lead to a concentration of the arc current, and hence also the heat
flux, at the hot spots. The increased heat input at these points would then
tend to raise their temperature even more, and this, in turn, would produce
a further concentration of current and heat flux. Thus, the arc would tend
to contract into a spot, with a spot temperature considerably higher than
that of the surrounding cathode.

Bauer did not indicate how steep a temperature dependence would be required
to cause spot formation, or what would determine the ultimate operating
temperature reached by the contracted spot. These questions can be
answered approximately, however, for a fairly smoothly varying heat flux
function q (T), by reference to equation (74) which gives the critical
steepness required for stable operation of the spot. If the steepness of

q (T) at the initial cathode temperature exceeds this critical value, then
the arc contracts and the spot temperature rises until a temperature is
reached for which the steepness of q (T) has fallen to the critical value

1/y given by (74). Once this critical steepness has been reached, the
concentration of heat flux produced by the temperature gradients across
the spot is no longer sufficient to cause a further rise in temperature, and
stable operation thus ensues.

In the case of an irregularly shaped function q(T), for which the Taylor
series expansion is not a good approximation, equation (74) is naturally
not applicable. However, the more general relation (69), which states
that the temperature gradient across the spot must be just sufficient to cut
the heat flux off at the spot radius, remains valid. It is, thus, expected
that, in general, stable operation of the spot is possible only for certain
specific temperatures for which the dependence of the heat flux on tempera-
ture is just '""steep' enough, in some sense, to produce the required cutoff.

The general nature of solutions to the cathode heat conduction problem (62)
can be seen from the approximate relations (66), (68), and (74) Qr
(69) deduced above. For a given cathode fall voltage V. and

boundary temperature T, q(T) is a known function of T, and the possible
operating temperatures T,; of the cathode spot are determined completely
by the solutions of equation (74) or its more general form (69).
Depending on the form of q(T), there may be zero, one, two or more
solutions for T,y. For each of these possible values of T, , the spot radius
rs is uniquely determined by equations (66) and (68). Thus, the heat
conduction problem in the cathode has stable solutions only for certain
specific values of the spot radius r, and temperature T,,, and the arc is,
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therefore, forced to contract in front of the cathode so as to take on one of
these permitted values for the spot radius. Each solution of the heat
conduction problem corresponds to a possible mode of operation of the
cathode.

Once T,y and rg, have been determined, approximate values for the other
significant cathode operating parameters can be calculated from the equations
given in section IIIC. In particular, the average electron and ion current
densities over the spot, (jehy 2and (j;),y,» can be determined approximately
by evaluating the implicit equations (55) through (59) at the average

spot temperature T,y , and the total current can, then, be found from (60)

in the integrated form

1= ne? [Gday + Gidav) - (75)

3. Approximate Theory of Cathode Spots

An approximate theory for the burning spot on a semi-infinite cathode with
temperature Ty = 0 at infinity is developed in this section. The heat input
function q(T) for this problem is given by equations (54) through (59)
and has the form illustrated in figure 4.

It is convenient to consider separately the case in which the ion current
density j; is everywhere less than its limiting value (j;) max s and the case

in which j; = (j; Jmax ©OVer part of the cathode surface. In the former case,
the function q(T) can be approximated fairly well by a straight line over

the entire range of temperatures occurring in the cathode spot (see figure 8),
so that equation (74) may be applied to determine the approximate

spot temperature T,,. An implicit differentiation of the equations (54)
through (59) defining q(T)gives for the steepness function (neglecting

the radiative heat loss from the spot)

q(T,y) 2 + (11609¢ — 4.4 \VED) /T,y
1(Tay) Lo Ll B T

For reasonable values of the parameters, this quantity is always 3 10, so
that equation (74) can be satisfied only if Ty has a fairly large positive
value. Thus, the burning spot on a thermionic cathode cannot operate with
an ion currentdensity less than the limiting value (j; )max unless the cathode
is rather poorly cooled. It may be concluded, in particular, that this
mode of operation is not possible for the semi-infinite cathode with T, =0,
which is under consideration in the present section.
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If theion current density j; is equal to the limiting value (i ) max OVer part
of the spot, then it is no longer possible to approximate gq (T) even roughly
by a straight line, and equation (74) for the spot temperature is not
applicable. However, qualitative arguments similar to those used in the
preceding section can be employed to show that a stable spot should be
possible in this temperature regime. It was pointed out in the discussion
of equation (74) that, if the heat flux q is too steep a function of tempera-
ture, the spot must contract and its temperature must rise until a stable
situation is reached. As seen above, for jj < (ij )pax » the heat flux function
q (T) is always much too steep to permit the existence of stable solutions,
so that the spot must continue to contract and its temperature to rise at
least until j; = (j; ) max at the center. On the other hand, the peak temperature
in the spot cannot rise above the temperature at which q(T) becomes
negative owing to the cooling effect of excessive electron emission, since
the heat flow in the cathode interior must always be away from the region
of peak temperature, and this heat flow must be supplied by the flux into
the surface. It therefore appears that a stable situation must be reached
with a spot temperature somewhere between that at which i; = (ij )max and
that at which q(T) becomes negative. For the particular case illustrated
in figure 4, this argument indicates a spot temperature between about
2850° and 3150°K for a cathode fall of 10 volts, and between about 3000°
and 3100°K for a fall of 5 volts.,

Although the qualitative considerations of the preceding paragraph serve
to determine the average spot temperature to within rather narrow limits,
it appears possible to obtain a somewhat more accurate solution by con-
sidering the average electron and ion current densities in the spot. Itis
assumed, for this calculation, that all of the power brought into the ion
production zone by the electron current nrg® (je)ay is consumed in pro-
ducing the ion current m'sz (j; ) ay Which flows to the cathode surface. This
assumption leads to the simple energy balance relation (13) for the
average current densities (j, ),, and (j; ),y » 2@lthough not for the current
densities at each individual point. Then,

a
ew = —=Gy (77)

1l =

where a is given by (58). A somewhat different assumption was made
in deriving equation (57) above; however, the present assumption ap-
pears equally well justified by the facts of the physical situation, and is
more convenient for the present analysis,

Since according to (76) the heat flux function q(T) for i < (ii)max is
very much steeper than would be required to satisfy (74), it appears
likely that, in a stable spot, a large part of the spot area must operate

with j; = (ii)max' It, therefore, seems reasonable to take

AT



() = Uoan (78)

in equation (77). Since i, is a rather smoothly varying function of T over
the spot (see figure 6),(j.),, > je (T,,),and equation (77) becomes

e Tag) = —— Gdnax - (79)

In combination with the defining equations (55) and (56) for ie, equa-
tion (79) gives a relation for determining the average spot tempera-
ture T,, . This relation takes the place of (74). Once the spot tempera-
ture T,, has been determined as a function of V. from equation (79), an
approximate solution for the remaining spot properties can be obtained by
the methods outlined in paragraph 2 of section III D above, using equations

(54), (66), (68), and (75).

For the present case, a somewhat more accurate version of equation (68)
can be obtained from consideration of the temperature distribution in
the cathode spot. It is apparent from figure 4 that the heat flux q(T) to
the cathode surface is significant only for a rather narrow range of surface
temperatures whose width is of the order of 500°K or less. Thus, the
temperature difference across the spot is not very large, and the heat flow
shouid be about the same as it would be if the spot were at a constant
temperature. This latter problem, however, has been solved, 27 and the
total heat flow Q is

Q = 4Kty (T,y = Tg) (80)

where T,, is the spot temperature, and T, the temperature at infinity.
This equation differs from the approximate relation (68) only in that the
factor 27 in (68) is replaced by the factor 4 in (80).

An estimate of the actual temperature difference across the spot can also
be obtained from a comparison with the solution for a constant temperature

spot. The heat flux per unit area at the center of the constant temperature
spot is27

2K (T, - Tg)
q = ‘ (81)

ﬂts

On the assumption that this same heat flux exists at the center of the actual
spot, the temperature T, at the center of the spot can be calculated from
the relation between q and T given by equations (54) through (59h

The calculated maximum spot temperature T can, then, be compared with
the average spot temperature T,, to check how well the assumption of a
constant spot temperature is satisfied.
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Calculations of the cathode spot parameters have been carried out as a
function of arc current I for a thoriated tungsten cathode operating in
argon and helium at 1 atmosphere pressure, using the approximate spot
theory developed above. For convenience, the equations used in the cal-
culation are summarized below:

Q=+ V- j; - j, — oeT, ? (54)
jig SRS o Ta (55a)
6 = 11609 ¢ - 4.40 VE_ (35b)
E. = 873V /4 [assw!/2j; -, ] . (56)
a=V./(V.+V) (58)

U)o ™ pe'e/\/&erT8 (59)
= 2
Q = mro q (66)

I=nt2 (g +ip (75)

i = Gma WSy
je =(1=-aj;/a (79)
Q = 4K, T,y (80)

These equations are solved iteratively by the following procedure. For a
given value of the independent parameter 1, a guess is made as to the
value of the cathode fall voltage V.. Values ofa,j; , and j, are then
calculated from equations (58), (59), (78), and (79). These values

are substituted into equations (55) and (56) to obtain a first
approximation to the average spot temperature T,y. An improved ap-
proximation to V. is then obtained by substituting the known total current
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I and the first approximation to T, into the relation

pe o€ Tav4 a
Vo = ¢ + 4KT,, — - - g (82)

mj; 1 )i

which is obtained by combining equations (54), (58), (66), (75), (79), and
(80). The entire sequence of steps is then iterated until satisfactory con-
vergence is obtained.

The results of the numerical calculations are presented in Table 2.
These results are based upon the material property values,

¢ = 2.6 volts

A = 1amp/cm? 2

K = 0.94 w/cm °K

€ =04 (83)

obtained by analysis of experimental data on rod shaped thoriated tungsten
cathodes (section V below).

Although the approximate nature of the theory and the uncertainties in the
material property values probably preclude any meaningful quantitative
comparison of the calculations with experimental data, the magnitudes of
the various spot properties given in Table 2, and their general trend
with current and gas type, are in very satisfactory qualitative agreement
with experiment. Thus, for an increase in total arc current by a factor

of 100, the calculated current density increases by only a factor of 3 or 4,
in agreement with the general observation that an increased arc current is
carried mainly by an increase in spot size, but also to some extent by a
slight increase in the current density over the spot. The calculated results
also show a drop in cathode fall volta,ge-28 and a slight rise in spot tempera-
ture with increasing current, in agreement with experimental observations.
The generally lower values of spot temperature found experimentally* by
Neur ath2? might be explained by a slight difference of the work function ¢
or the Richardson constant A from the values assumed in these calculations.

Comparison of the results for the two gases shows that the spot tempera-
tures and current densities are distinctly higher in helium than in argon,
as was also found experimentally by Neurath. 29% The primary reason for
this difference, according to the theory given here, is the lower molecular
weight of helium, which permits a higher limiting value (ji Juax for the ion
current density. Since, in this theory, the limit on the ion current density

-
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plays an essential role in stopping the contraction of the cathode spot, a
higher limiting value (j; )pnax Permits the spot to contract further, and thus
to reach a higher operating temperature.

Another interesting feature of the present theory is the prediction of the

shape of the temperature distribution across the cathode spot, as shown in
the last column of Table 2. The results indicate that, as the total arc
current increases, the maximum temperature T in the spot remains about
the same while the average spot temperature increases somewhat. This
leads to a rather '"flat topped' temperature distribution across the spot at

the higher currents, in agreement with qualitative observations by Neurath. 29
The slight increase in the maximum temperature T at low currents which is
indicated in Table 2 is believed to be spurious, and to be due to the break-
down of the assumption of a constant temperature spot used in deriving
equation (81).

Calculations of the cathode spot properties have been carried out for several
different values of the cathode work function ¢ to investigate the dependence
of the solutions on this parameter. In general, it is found that a change in
the cathode work function produces a nearly proportional change in the spot
temperature T, ,, while the other spot properties are changed very little.
Again, this conclusion is in qualitative agreement with Neurath's2? experi-
mental results on cathodes of different materials.*

Although no calculations have been carried out for pressures other than
atmospheric, it is readily seen that a higher pressure increases the limiting
value (59) of the ion current density, so that according to the theory the
spot should contract and the spot temperature and current density should
rise with increasing pressure. This behavior is again in good agreement
with the general trend of experimental observations. 6 The increase of
cathode spot temperature with pressure, predicted by this theory and
observed empirically, evidently places a very severe requirement on the
design of thermionic cathodes for operation at high pressures, unless its
effects can be counteracted in some way. One possible method for extend-
ing the pressure capabilities of thermionic cathodes is use of low work
function, high melting point materials. Another is development of cathodes
with sufficiently poor cooling (or even heating) to prevent the ior current
density from reaching its limiting value (j; Jpax - As discussed after
equation (76), such cathodes would operate in the spotless mode with a
substantially lovver maximum surface temperature than that occurring in
spot mode operation. On the basis of the approximations underlying the
present theory, the surface temperature of a thermionic cathode running

in the spotless mode is pressure independent.

L]
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V. QUASI ONE DIMENSIONAL MODEL

A. PRELIMINARY DISCUSSION

The solution of the cathode model (62) can be approximated rather simply
for a rod shaped cathode with the arc striking to one end, because in this case
the heat flow problem becomes approximately one dimensional. True one
dimensional heat flow can never actually be realized in a cathode, because of
occurrence of one or more of the following effects:

1. Radiative heat loss from the sides of the cathode.
2. "Overflow' of the arc current onto the side of the cathode near the tip.
3. Spot mode operation.

However, radiative losses can be allowed for by inserting a fictitious sink term
into the one dimensional steady heat flow equation. Arc overflow can also be
represented approximately by modifying one dimensional solutions, as shown
below in section V C. A rod shaped cathode with heat loss by side radiation,
arc overflow, and Joule heating can thus be described approximately by means
of a quasi one dimensional theory. Spot mode operation is more difficult to
treat in such a theory because it produces more extreme departures from one
dimensional heat flow in the tip region.

The quasi one dimensional theory of a thin, rod shaped thermionic cathode
operating in the spotless mode provides a case in which the consequences of the
cathode model {62) can be worked out in considerable detail. This theory is
of interest also because it is possible, under certain circumstances, to operate
rod shaped cathodes in the spotless mode, and, thus, to obtain a comparison
between theoretical predictions and experimental data.

Section B below presents the solution of the quasi one dimensional heat flow
problem for a rod with Joule heating and radiative loss of heat from the sides.
Section C develops an analytical approximation to the temperature distribution
in the tip region in the presence of arc overflow. The results of these two
sections are combined, in section D, with the relations describing processes

in the cathode fall zone and at the surface. A numerical procedure is developed
for solving the resulting cathode model. Numerical results are given in sec-
tion E.

B. QUASI ONE DIMENSIONAL HEAT FLOW IN A THIN ROD WITH JOULE
HEATING AND SIDE RADIATION

The quasi one dimensional flow of heat and electric current in a rod can be
analyzed without considering the mechanism by which the end of the rod is
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heated. Such a procedure is advantageous because the results can then be used
in conjunction with various approximations to the theory of cathode fall zone
and surface processes. However, the temperature dependence of electrical
and thermal conductivities makes it convenient to specialize the theory with
respect to the type of cathode material. In the present section, the quasi one
dimensional theory is developed for the case of tungsten cathodes, possibly
containing small quantities of low work function additives. The theory could
also be worked out for carbon cathodes, but this has not been done because
operating lifetime and contamination considerations make carbon less interest-
ing than tungsten for most plasma generation applications.

The following analysis pertains to a cylindrical rod of length L and diameter
D<<L . The diameter is assumed to be sufficiently small that radial tempera-
ture differences can be neglected in comparison with axial ones. Then the
temperature field in the rod's interior is approximately one dimensional,
T=T(x) , where x is a coordinate along the axis of the rod with its origin at the
cold end and with its positive direction toward the heated end.

It is assumed that the rod carries an electric current in the axial direction with
a uniform current density j,. This current is assumed, for the present, to
enter and leave the rod only through the ends. Conservation of charge then
requires that j,(x) = constant. Joule dissipation produces a distributed heat
source with a power density p j02 , where p denotes the resistivity of the
material. Heat is lost from the sides of the rod at a rate oe T , where o is
the Stefan-Boltzmann constant (5. 67 x 10-12 w/cm20K%4), ¢ the total emissivity
of the material, and T the local temperature.

The steady state energy balance for the volume bounded by the side surface of
the rod and the two planes x and x + dxis

dq 7 D2 7D? .2 nD? 4
q+ — dx}). —q.—-=p)o.4dx—a(T.ﬂDdx

dx 4 4
or
4
dq . 40¢T
. (84)
dx D

in which q represents the local axial heat flux in the rod,

q = - K dr/dx . (85)

The differential equation describing steady heat flow in the rod is, then,

d (4T 5 ApeT* -
s — + o =
dx( dx> £l D (86)
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Integration of this equation requires specification of the temperature dependence
of the material properties K, p, ¢ . Literature data on the values of these quan-
tities for pure tungsten are shown in fi%ures 9, 10, and 11. Figure 9
indicates that the thermal conductivity30' 1 of tungsten does not change in
any systematic fashion with temperature. For fully dense pure tungsten, a
mean value of about 1.1 or 1. 2 w/cmO©K represents the literature values with
reasonable accuracy over the temperature range from 300° to 3000°K. In con-
trast, the electrical resistivity32 varies widely over the same temperature

range, as shown in figure 10. The values can be fitted by an empirical
formula,
p=BT® |, (87)

where, for pure tungsten,*
B = 50x10~° ohm-cm/°k® (88)
s = 1.234

Figure 11 shows that the total emissivity33 of pure tungsten increases with
rising temperature, but does not vary greatly in the high temperature region,
where the radiative heat flux from a cathode surface is large. In view of other
approximations being used, it appears that ¢ = constant should be an acceptable
approximation.

When K and ¢ are assumed to be constant and p is represerted by (87), the
differential equation (86) becomes

- 2
2 B
d“T 4 Jo
e e % (89)
dx2 KD
which, with the substitution u = dT/dx, d?T/dx?® = uduw/dT , readily yields the
first integral
2 1
2B
LR . I S (90)
dx 5KD (s+1)K

.Equation (87) could also be written in the form p = B’ ('I'/Tu),s with T = 1°K and B'=5.0 x 10~? ohm-cm.
The form actually given in (87) is obtained by setting B = B'/Tus , which gives (88) with its somewhat strange-

looking unit, ohm-em/°K®. Writing (87) in terms of B rather than B “simplifies the appearance of the many subsequent
formulas based in part upon (87).
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The remaining integration necessary to obtain T as a function of x must be
performed numerically. To minimize the number of cases, it is advantageous
to introduce nondimensional variables, as follows: Let

v =(si‘§c>l/s 4 (91a)
= \/C_(S:}(;;)m ; (91Db)

and define the parameter

2B jy? 8oe \ —(s+1)/5
T e 1) KC (sxoc) ’ (91c)

Then, the differential equation (90) reduces to

ﬂ/'_ _ Il |
= B \/1+¢: ¥ ‘ (92)

Define the function

¢I
6’ / = (93)
yZ) = .
o Jl+¢5_z¢s+l

Then, the general solution of (92) can be expressed as

= G(l/I,Z) == G('}”Oyz) ’ (94)

where ¥ is the value of ¥ corresponding to n = 0.

The function G (¥,z) has been evaluated numerically for s = 1.234 using a pro-
gram for Simpson rule integration. The results are given in Table 3 and
illustrated in figure 12 for a few values of z. The shapes of the curves
become intelligible on physical grounds when it is noted that ¢ is proportional
to temperature and G to distance from the cold end of the cathode (apart from
the relatively small shift represented by G (¥j,2) in equation (94). For

z = 0,there is no Joule heating since i02 =0 from (91c). For small ¢ (low
temperature), the curve representing G (¢,z) for z=0 is nearly linear, since
radiative losses are negligible in this region. Asy increases, radiative losses
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rise as 1/14 and the temperature gradient dy/dG steepens, because the rod in this
region has to carry not only the heat flux reaching the cold end but also the heat
escaping through the sides above the end. For z>0 , Joule heating contributes
to the energy balance for the rod. This heat addition tends to decrease the
temperature gradient d¢/dG at points distant from the cold end of the rod, since
some of the heat flux reaching the cold end is now supplied by Joule dissipation,
and, thus, need not be carried by conduction at the point in question. The curves
for z>0, thus, bend upward initially before reaching the high temperature
region where radiation dominates and dy/dG becomes large.

For z values a little less than 2, the curves become quite sensitive to z for
R20.9. The reason for this behavior is that the radicand 1+ Yy ) —zySt1l in

(93) becomes small for y~1 in these cases. For z =z, where
z, = 5[(s+1)s+1 (4_5)4—51—0.2 ) (95)
the radicand has a minimum of zero at ¢ = Ym = s+ 1D/(4 - 9192 | and

G (y,2) goes to infinity at ¢y =¢_ . For s = 1.234, z. is approximately 1. 9887.
Since ¢ and G are essentially proportional to temperature and distance, respec-
tively, the solution for z = z_predicts a region of almost constant temperature
extending downward from the heated end of the cathode. In this region, Joule

heating is virtually in local equilibrium with side radiation.
In addition to G (y,z) , certain other one dimensional cathode functions are

useful. The resistive voltage drop between the points x; and x, along the
cathode is given by

%2 X3
AV=/ pjodx=j0B/ TSdx |, (96)

=i Xy

using (87). Substitution of (91) gives

ry L S0P/ Bge \=(E+1/5 o
e RN d =
¥ Ve <5KDC> ¢= dg (97)
M

=bd=



Since dgp = (dp/dy)dy, the integral can be transformed, using (92), to

jo B < 8oe \—(5+1/3 5l
AV = Vv -V ’ ’
VT \skpc v @y2 1,21 a
where
: g dy
V@2 = = (98b)
Visy’ -z o1
0
and ¢y, are the values ofy at the points x;,x, . The electrical resistance

of the cathode between x; and x, is equal to AV/I, where I denotes the total
current. The Joule heating power evolved in the cathode between x; and x,
is I-AV.

Similarly, the total power lost by side radiation between the points x; and x,
along the cathode is

X

2 )
APgp = / o€ T4 . #Ddx = genD / Ttdx . (99)

e X1

Substitution of (91) gives

12

oenD 5KDC

=L ghan . (100)
C €

APR=
|

Transformation to an integral over ¢ gives

seDZK{C
APg =—L§—\/——[R(¢2,Z)—R(¢1,Z)] : (101a)
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where

4
R’ 2) = L . (101b)

\/l+¢5—Z|/ls+1'

The functions V and R satisfy a simple algebraic relation.

Consider
d(1+.p5—z|/;s+1) S ns+1
=2 J1+@')Y -z@") =1 . (102)
A ’1+¢5_Z¢S+l

On the other hand,

'pl ¢I 4 ¢’ s
d(l+¢5—z¢s+l) =5 b ¥ —-(s+1)z a2 :
Ji+¢,5_z'/,s+ll A ﬁ-}-l,llS—ZI/ls-’-l b ﬁ+¢5_z¢s+l'

0
(103)

Hence,
SR (,z) — (s+1) zV (Y,2) = \/1+¢5—z¢s+r—l . (104)

This relation corresponds physically to the complete energy balance for the
cathode. The functions V (¥,z2) and R(¥,2) are presented in Tables 4 and 5
respectively, for s = 1. 234,

Application of the nondimensional cathode functions requires that the constant
of integration C appearing in (90) and (91) be specified. This constant is
determined by the boundary conditions, which can be of several types. Two
cases are discussed here as follows:
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1. Casel
A cathode experiment, such as the one discussed below in section V, may

provide data on the temperature and heat flux at the cold end of the cathode.
In this event, the boundary conditions on the problem are

T(0) = T, (105a)
(K dT/dx); _o = qp (105b)
Then, from equation (90),

2 ¢ 2

do 8oe _ 5 2Bio" Ls+1

c=\—) - T 0
K SKD (s+1K

(106)

2 Case 2

The boundary conditions for the theoretical cathode model are a given
temperature at the cold end of the rod and a relation such as (62d)
between temperature and heat flux at the hot end. The heat flow problem
does not stand by itself in this case, but may conveniently be represented
as a problem in which the heat flux at the hot end is given. The boundary
conditions may, then, be taken to be

T(0) = T, (107a)
(KdT/dx), _ = qg , (107b)

and from (90),

2 ¢

s 80¢ 2B jg 1

£ wl—] = W B 5 108
<x> SED * T (st1E * (108

where T denotes the temperature at x=L .

The solutions of the quasi one dimensional heat flow problem are given by

equations (91) and (94), with C represented by (106) or (108) according as
the boundary conditions are (105) or (107).
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C. ARC OVERFLOW

When a thin, rod shaped thermionic cathode operates in the spotless mode, the
entire tip region is at an approximately uniform high temperature. Electron
emission, therefore, occurs from the entire end surface. In addition, the side
of the cathode just below the end is almost as hot as the end surface itself, so
that some emission occurs from this surface also; i. e. , arc "overflow' onto

the side of the cathode takes place. This phenomenon affects cathode operation
in a rather significant way, since it reduces the surface current density required
to yield a given total current, and, thus, reduces the tip operating temperature.

It is assumed that the current density is low enough that the ion current is less
than (j;),.y (16) over the entire surface. Then, equation (29) for the net

heat flux to the cathode surface reduces, with j; = aj, je=(1 - a)j, and
equation (13), to the simpler form

K @T/dn)g = j (Vo — ) —oe T4 . (109)

The current flow through the side of the cathode gives rise to an additional
fictitious heat source term in the quasi one dimensional heat flow equation
(89), and also affects the Joule heating term by making the current density
along the rod a function of position. Equation (89) is replaced by

PT _ doc 4 4V-d BT (110)

Js
dx2 KD KD K

Here, j, denotes the current density through the side of the cathode, a function
of temperature; and j is a function of x.

These overflow effects can be incorporated into the quasi one dimensional heat
flow theory most conveniently by means of a perturbation approach, which
assumes that the extent of the overflow region is small in comparison with the
cathode length. This assumption is usually satisfied, because the current density,

is ALV, + VI)
o pmcy ey -t = T2 C—O/T
l—a VI

(111)

is a strong function of temperature, and because in most cases the temperature
gradient in the tip region is large on account of radiative heat losses from the
side. However, if Joule heating is comparable with radiative losses in the tip
region, the temperature gradient may be so low that the overflow region
becomes large. The perturbation theory of arc overflow effects is thus in-
applicable to cathodes operating at such high currents that Joule heating and
radiation nearly balance one another in the tip region.

.



On the assumption that the extent of the overflow region is small in comparison
with the cathode length, the actual temperature distribution T(x) is indistinguish-
able from a solution T, (x) of the heat flow equation (89) without overflow,
except in a small region near the tip. The actual temperature is then repre-
sented by

T@ =T, @ + t&@ , (112)

where the perturbation term t(x) is small in comparison with T, (x) and
approaches zero rapidly with increasing distance from the tip. Since the over-
flow region is assumed to be small, T, does not vary greatly in the region
where t(x) differs significantly from zero. Reasonably simple results can then
be obtained from (110) by systematically neglecting all but the very strongest
temperature dependence in the terms appearing on the right hand side. In
addition, Joule heating is neglected in the tip region because the perturbation
approach is invalid in cases where it cannot be neglected in this region. *

These approximations bring (110) into the form

4(Ve =) A(Ve+ VY 2 —0/(Ty +v
T
g Sl 4 KD Vy mp ©

’

where T,  =T,(L) is the temperature given by the unperturbed solution at the
tip of the cathode, and the weak variation of 6 with current density given by
(18) is neglected. T,(x) satisifes (89), which becomes, with the same
approximations,

2
d Tn 4o¢ 4
= Tas
dx2 KD

The differential equation satisfied by t(x) is, thus,

a2 4AVT, 2 [~ O/T,+ 0

y (113)
dx2 KD

*This restriction does not rule out cases in which Joule heating is important along a large fraction of the cathode’s
length; so long as the cathode tip is significantly hotter than the midsection, the radiative loss decreases rapidly

(as T“) with distance from the tip, whereas the resistivity falls off more slowly (only as T1.234 e
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in which

Ve
V= (V.- .
(Ve =) 1+VI

(114)

Let y represent the distance of a given point from the hot end of the cathode,

y=L-x

Then, in the overflow region,

Tn - Tns = Tns,y ’

where

Tns’ = (dTn/dx)x= L ¥

(115)

(116)

(117)

and in the region under consideration, y is small enough that T, 'y <<Tpyg

Also

1 1 t
| l_-— -
T,+i¢t Is Tn

Let

Substitution of (118) and
for o,

Lo/dy? = — a b ,
with

AN T Ve

ns

KD

b= 0/T, 2

(119) into (113)

-

(118)

(119)

gives a differential equation

{120)

{121)

(122)



The first integral of (120) is

do \2 2a bow

? - - T e + coanst. (123)
For large y, t approaches zero and, from (119), deo/dy approaches -—Tns'
Hence, the integration constant is equal to Tns'2 )

do 2a o

= 2 == ~bd

dy - &ns ™ & % (124)

A final integration gives

ns Tns

2 2a o
by + const. = . tanh — 1 1———’? ebo | (125)
b

Since, for large y, o~ - Tns' y , the integration constant in this equation is equal

to [ln (2b T, " %/a)] /T,y . Hence,

2 , 2
b bTas 2 bTys'y 1 2b Ty
eP¥ mi———— gech® | ———— @& — I | =———— = (126)
2a 2 2 a

Elimination of w, a, and b using (119), (121), and (122), then gives the
perturbation function t(y),

2 ’
i Tos 1 2 0 Tpg'y 1 -
g T 7 * 0 In x sech —2-1-_2— = ? ’ (127)
ns
where
-6/T
IANT S 0O
A= (128)
0KD T, "2
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is a nondimensional parameter characterizing the amount of arc overflow. The
value of t at the cathode tip (y = 0) is

2
2T,

tg = — In(1+A) , (129)

so that for A = 0 there is no change of the tip temperature.

The current erzj/4 carried by the cathode at any given point along its length is
equal to the current nDZiE /4 entering through the hot end, plus the integral of
the ""overflow' current density into the side between the hot end and the point in
question. Hence,

y
4 :
i =g + = igdy - (130)
Now from (111),
A(Ve+Vp - 0/(T, . +ty)
i = _V_rng . i 5 (131)
I

Substitution of (118), (119), (121), (122), and (126) gives

A(VC+VI) o 2 e_e/Tns
e ns

i =

(132)
LR vy

The second term of (130) can be evaluated using the same relations. The
integral is

ns eb&) dy ; (133)

The integrand on the right hand side is given by (126). Thus,

-78~



) . KTns s 0Tnsy 1 1=
) = Jg #* tanh| ————— — — InA - : (134)
A4 -¢ 2 2T 2 2 1+A

According to (134), one -half of the total overflow current (represented by the
second term on the right hand side) has entered the cathode at a distance Yo.5
from the tip, where ’

T, 2

ns
y = —1n (2+A) . (135)
0.5

6T

ns

For large y, j approaches the current density j, for the unperturbed solution.
Setting y = in (134) and substituting (132) for jg ,» one obtains

-0/T
AV + VDT, e /Tas 4T

io = 1+ +A)
@+ N vy DOT

2

ns

1136)

’

ns

This is the expression for the current density jo at the cold end of the cathode
in terms of the actual values of 6 and V. for the "perturbed' case with overflow
and the quantities Tpg and Tps” for the fictitious ""unperturbed' (no overflow)
case.

The heat flux g into the end of the cathode is given by (112) and (119) in
the form

dT . de dw
g = K E—;E=K Tns—d—y-0=—K —‘E'—)O . (137)

Equation (124), together with the integrated expression for o,gives

1-A
1+A

qE = KTns' (138)

This equation shows that, for A> 1, the heat flux into the end of the cathode is
negative; i.e., the temperature near the cathode tip decreases with increasing
x. This situation cannot arise in actual cathodes, except perhaps in cases in
which the cathode is heated almost entirely by Joule dissipation. As indicated
previously, the perturbation theory of arc overflow effects is inapplicable to
such cases. Thus, for situations in which the theory is valid, A always
lies in the range between zero and one.
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D. SOLUTION OF THE QUASI ONE DIMENSIONAL CATHODE MODEL

The results of the preceding sections B and C provide the means of solving the
heat conduction part of the quasi one dimensional cathode problem. The pres-
ent section combines these results with the relations describing processes in
the cathode fall zone and at the surface, to obtain a complete system of equa -
tions which can be solved to yield predictions of performance for rod shaped
cathodes.

It is assumed that the dimensions L, D and physical properties A, ¢, K, ¢, B of
the cathode are known, and that the electrical resistivity is given by equation
(87) with s =1.234. This is the value of s for pure tungsten, and it should
be approximately the same for tungsten with additives, even though the value of
B might be a little different for such materials. The gas properties W, Vi and
the temperature Ty of the cold end are also assumed to be known.

The "unperturbed' solution, which correctly describes the temperature field in
the cathode everywhere except in the overflow region near the tip, is governed
by equations (91) and (94). At the tip, these equations give the following
relations involving the quantities T and Tns' which appear in the perturbation
theory of arc overflow:

s = G (g, 2) = G (Y, 2) (139a)
1/5

8o¢

7 = Y& <5KDC> L (139b)
1/5

8

vs = <5£D‘C> i (139c)
8o¢ 1/5

Yo = <5KDC> Ty (1394)

2Bj02 (80‘ >—(s+l)/5

(s+1)KC \5kDC (139e)
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The constant C is given by (108),

.2
C T .2 8o¢ T 5 ZBJO T s+1 39¢

= - — + — .
3 SKD "% (s+1)K °F (124

Here, Tps and Tns’ are fictitious values for the temperature and temperature
gradient at the hot tip of the cathode, based upon an extrapolation of the unper-
turbed solution to the tip, neglecting overflow. The actual heat flux into the end
of the cathode is (138)

qg = KTyg (1=NA1+A) | (139¢g)
-6/T
2A(V ~p) (Vo + VP Tt e 08
s s . (139n)
OKD V[T,

Here, V. and 6 are the values for these quantities in the actual case with over-
flow. The current density at the hot end is (132)
-0
AV + VDT 2 e /Tas

iE = - ) (139i)
LR vy

while the current density at the cold end is (136).

5
)0 = )E l+(l+}\) ——— ’ 139.
DOT,, (139j)
0 is given by (55b)
0 = 11609 ¢ — 4.4 VE. (139k)

with E_ given by (8) and (58)
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v v, 172
1/4 . 1/2 (1823 W)I/Z < . (1391)
E. =873V = .
¢ - JE Ve + Y ¥+ ¥

The energy balance (109) becomes

9g = jg (Ve=¢) - oeT, 2, (139m)

in which the radiative energy loss is approximated in terms of the unperturbed
temperature T . at the end of the cathode. Let

¥ BT kL35

Then equations (139a to n) constitute a system of 14 equations for the 15
quantities 7g, ¥g, ¥, 2, C, Tpg, Tog s igs As jg» 985 0, E¢, Ve, and r. The value of one of
these quantities can be selected arbitrarily (within, perhaps, certain limits),
since the cathode can operate over a range of total current values. After this
selection has been made, the 14 equations (139) can be solved numerically
for the 14 remaining unknown quantities. From the solution, various other

quantities such as the actual tip temperature,

BT
Tg= Tas [ 1= —— Wa+1)| (140)

and the total current,

I = oD%j4 , (141)

can be calculated. Equation (140) is based upon (112) and (129).

The solution of equations (139) can be accomplished by selecting r as the in-
dependent variable and noting that when values of 6 and T,s are given, all of the
other unknowns can be calculated analytically in the following way. With r spec-
ified, assumption of a value for 6 gives Tgs by (139nj). Elimination of qg and
jE from (139g, i, m) gives

2 _~1/r
AVTns e

4
———— —0¢€T = KT

ns ns
(1 +A)2 1+A

(142)
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Then, elimination of V using (139h) and (114) gives a quadratic equation for
A in terms of T,

AT~
ns 2 4 2 4
i m— [(1 A2 oeT, & + 1-ADKT,, : (143)
OKD T,

the solution of which is

2
1 s OKD T,
A= l20eT b - ————
‘ 4 2
KT, ~iaeT 4} z 2T,
2 2 )
OKD T, ,
+ ——— —20eT, | +4 ®2T,, % =028 T,8) : (144)
1.2

Thus, with values assumed for § and T,,,\A can be calculated. The quantity V
can then be obtained from (139h) and (114),

2
AOKD T,

T : (145)
-1
2AT A /1

Equation (114) can then be solved to give V_,

Ve == 5 (Vp-9) + = Vop+ 92 +4viv (146)

The current density io for the unperturbed solution is, then, from (139i and j),

AT Ay T2 et A2

. I (1 X3
1 +M? vy DOT

(147)

i0=

’

ns

Now C can be calculated from (139f), and ng, ¢g, ¢, and z from (139b, c, d, e).
Substitution of these values into (139a) gives a measure A of the error
in the original choice of T  :

A = gy - [G(Yg,2) - G(Yy2)] . (148)
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By trial and error and interpolation, the value of T_ . (if any) which makes
A =0 can be found.* This is the '""correct' value of T, based upon the originally
assumed value of 6. An improved value of 6§ can now be obtained by solving
(139k and 1), using the values of V. and A based upon the initial "correct"
value of T,;". Elimination of E. and jg from (139i, k,1) gives

8-0\* 873 v /4 AL/2 gre=li2r
44 ) 1+A (

1/2

\
1823 Wyl/2 S _ 1:| , (149a)
v

where
6y = 11609 ¢ .

The solution of (149a) for 6 is

1 1
2
6=~ @%h+F) - — VF2+4F0, (149b)
where
16900 A1/2 v 1/4 1 ¢=1/27 v.
F = asaswl/2 _~ _1 . (150)

1+A VI

Since F depends rather weakly upon V. and A, and since F <<§,, the errors in
V. and A have little effect upon the value of 6 calculated from (149).

The procedure for solving the system of equations (139) may now be summa-
rized briefly. The independent parameter is 7. For a given value of r, the fol-
lowing iterative numerical calculation yields the values for all of the unknowns.

1. Approximate € initially by 6, = 11609 ¢ .
2. Calculate Tyg = 0r.

3. Solve the equation A=0, where A is given by (148), for Tns'. This can
be accomplished by trial and error and interpolation using equations
1(144), (145), (146), (147), (139f), and (139b, c, d, e). This proce-
dure gives values for T,s, A, and V. based upon the current approximation

to 6.

*If two such solutions exist, as happens in some cases, the larger of these is chosen. The other solution, which has
small Tns’ and, consequently, large overflow, corresponds to a condition of cathode operation for which the perturbation

theory of overflow effects is invalid.

-84



4. Calculate an improved value for 6 using (149) and (150).

5. Go to step (2) with this new value of 6 and iterate until ¢ has been deter-
mined with sufficient accuracy. Normally, the second or third pass through
steps (2), (3), and (4) will give an excellent approximation to the value of ¢ .

As pointed out previously, the perturbation calculation of overflow effects is
physically meaningful only for A <1. Asr increases, A eventually begins to in-
crease rapidly. When r is further increased beyond this region, the procedure
described above gives either no solution or a physically unrealistic solution with
A>>1. The range of r values giving physically significant solutions must be
determined by 1iria1. A satisfactory starting value for r can be estimated from
r~(10+ In A)" ",

A program for solving the quasi one dimensional cathode model (139) has
been developed. A FORTRAN listing and flow chart for this program are given
and discussed in appendix B.

E. NUMERICAL RESULTS

The mathematical model for quasi one dimensional cathodes operating in the
spotless mode involves the following material and gas properties, geometrical
factors, and physical parameters: total current (I), ion molecular weight (W),
ionization potential (V[), diameter (D), length (L), cold end temperature (T,),
Richardson constant (A), thermionic work function (¢), thermal conductivity (K),
electrical resistivity parameter (B), and total emissivity (¢). Because these
quantities are so numerous, it is neither feasible nor desirable to undertake a
comprehensive parameter variation study involving all combinations. Instead,
several series of solutions have been obtained in which most of the parameters
are held constant, and the dependence of the operating conditions upon a single
variable is explored as a function of current. These results are discussed in
physical terms to illustrate the principal properties of the model.

1. Material and Gas Properties

To limit the number of cases which must be considered, it is desirable to
select a ""standard' set of cathode and gas properties, which can be held
fixed while geometrical and other factors are varied. The effects of vary-
ing the material properties themselves probably can be studied most use-
fully by varying the ""material' rather than its individual properties. Table
6 lists the values assumed for the three cathode materials considered in
this section. The "'thoriated tungsten' values are based upon an analysis
of experimental data presented in section V.
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This ""thoriated tungsten' is chosen as the standard material for most of
the calculations. The properties given for '"pure tungsten'' are from the
literature, °V "~ In the case of '"barium oxide impregnated tungsten,'

the thermionic properties are obtained from Nottingha.m's:)’4 tabulation,
while the other properties are assumed to be the same as for the '"thoriated
tungsten.' Similarly, Table 7 gives the gas property values used in the
calculations. Helium is taken as the standard gas. In the case of nitrogen,
the ions are assumed to be N* (rather than N,*). The standard value for
Ty is chosen to be 300°K.

2. Dependence upon Cathode Length

The theoretical behavior of 1/8 inch diameter thoriated tungsten cathodes
of various lengths operating in the spotless mode in helium is shown in
figures (13 to 23). The primary effect of an increase in cathode length

is to decrease the cooling of the tip region. Most of the effects illustrated
in these figures can be explained qualitatively as consequences of this de-
pendence of tip cooling upon cathode length.

TABLE 6

ASSUMED CATHODE MATERIAL PROPERTIES

Material A @ K B s €

amp/cm2°K? | volts | w/cm°K |ohm-cm/ °KS|

Pure Tungsten 60 4,51 53 5.0x10"7 | 1.234 |o.32
Tungsten + ThOp 1 2.6 0.94 | 5.3x10"7 | 1.234 [o.40
Tungsten + BaO 15 2.0 0.94 | 5.3x10°7 | 1.234 |o0.40
TABLE 7
GAS PROPERTIES
°. Gas w Vi
gm/mole volts
Helium 4 24.5
Argon 40 15,7
Nitrogen 14 14.5
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Figure 17 CURRENT DENSITY THROUGH END OF CATHODE VERSUS
CURRENT AND CATHODE LENGTH (ONE EIGHTH INCH
THORIATED TUNGSTEN CATHODE IN HELIUM)
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Figure 18 HEAT TRANSFER FROM CATHODE TO COOLING SYSTEM
VERSUS CURRENT AND CATHODE LENGTH (ONE EIGHTH INCH
THORIATED TUNGSTEN CATHODE IN HELIUM)
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CURRENT AND CATHODE LENGTH (ONE EIGHTH INCH
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For example, the tip temperature (see figure 13) increases with decreas-
ing cathode length; i. e., at a given total current the tip becomes hotter, the
more strongly it is cooled. This result, paradoxical at first sight, is an
effect of the dependence of arc overflow upon tip cooling. As the cathode
length is decreased, the temperature gradient along the cathode increases.
This steepening of the temperature gradient causes the overflow current
density through the side of the cathode to cut off more rapidly with increas-
ing distance from the tip, so that a larger fraction of the fixed total current
flows through the end of the cathode rather than its sides. Since the current
flow is predominantly thermionic, an increased current density through the
end implies an increase of tip temperature, as shown in figure (13). For
very long cathodes, the cooling is mainly radiative rather than conductive,
so that increase of length beyond a certain point has no significant effect
upon tip temperature. This limit has been reached, for the cases shown in
figure 13, at a length of abaut 2 inches.

Further details of the mechanism just described are illustrated in figures
14 through 17. Figure 14 shows the "half height' (135) of the over-
flow region (defined as the distance from the tip at which one-half of the
overflow current has entered the cathode) as a function of cathode length
and total current. The decrease in overflow half height with decreasing
length causes a larger fraction of the total current to enter the cathode
through the end, as shown in figure 15. The turning upward of the curves
in figure 14 at high currents is a consequence of Joule heating, which tends
to decrease the temperature gradient in the tip region, and, thus, tends to
increase the amount of overflow. The same effect can be seen in figures

13 and 15, as well as in figure 16, which shows the variation of the
overflow parameter A . Figure 17 gives the current density through the
end surface of the cathode. The effects of Joule heating and overflow varia-
tion are apparent in these curves also.

The thermal power Q, transferred from the cathode to its cooling system

is shown in figure 18. This quantity is seen to be rather insensitive to
current, except at high currents where Joule heating steepens the tempera-
ture gradient near the cold end of the cathode. However, Qpis rather
strongly dependent upon cathode length, because changes in length have no
major effect upon tip temperature (see figure 13), while the heat flux at
the cooled end is roughly proportional to ( T - Ty)/ L. The quantity Qy/1 is
a voltage denoted by V4 . This quantity is shown in figure 19. The
total power dissipated by the cathode is the sum of Qp and the radiative
losses. The ratio of this total power loss to the total current is a voltage
Vioss @ the dependence of which upon length and current is shown in figure
20. This quantity is a measure of inefficiency; it is the voltage "wasted'
by the cathode at a given current. Figure 20 shows that for long cathodes,
Vipss becomes insensitive to length. The reason for this behavior is that
long cathodes are cooled predominantly by radiation from the region near the
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tip. V), ¢s decreases with increasing current, for a given cathode length up
to the point at which Joule heating becomes important; beyond this point,
Vioss increases with current. The onset of major Joule heating effects oc-
curs at different currents for cathodes of different lengths, so that the
curves cross one another in this region. At a given current, the optimum
cathode length for minimizing power loss is the length corresponding to the
lowest lying curve at that current.

The cathode fall voltage (see figure 21) decreases with increasing cur-
rent and with increasing cathode length. The dependence upon length is a
consequence of the assumption that the electrical heat flux to the cathode
surface is proportional to V_ - ¢, equation (139m). As the cathode length
decreases at a given current, the heat flux required to maintain the surface
temperature rises, and V_rises to meet this demand. This increasing de-
mand for heat input is also met partially by an increase in the ion current
fraction, as shown in figure 22. The corresponding increase of ion
density in the space charge layer produces an increase of surface electric
field with decreasing cathode length, as illustrated in figure 23.

3. Dependence upon Cold End Temperature

Just as figure 13 above shows that cooling the cathode more strongly
causes its tip temperature to rise, figure 24 indicates that "'heat-
ing' the cathode by raising the temperature of its ''cold end'' causes
the tip temperature to fall a little. The explanation of this phenom-
enon is, of course, that an increase of T, implies a decrease of the tem-
perature gradient along the cathode, and, thus, leads to an increase in the
amount of arc overflow, as shown in figure 25, The heat transfer Qg
from the cathode to the cooling system (see figure 26) decreases, as
would be expected, when the cold end temperature rises.

4, Dependence upon Cathode Diameter

When the cathode diameter is varied at constant tip temperature, the total
current varies almost in proportion to the area of the tip (i.e., as p?). For
this reason, it appears that the operating behavior of cathodes of various
diameters can best be compared using the current density j, at the cold

end as the independent variable in place of total current. If the cathode
were operating in a truly one dimensional fashion (with no side radiation or
overflow), the tip temperature and effective power loss voltage would de-
pend upon current density only, not upon diameter.

Figure 27 shows the effect of non one dimensional effects upon the tip
temperature for 1 inch long thoriated tungsten cathodes of various diam-
eters operating in helium. The calculated tip temperature falls with de-
creasing cathode diameter because, as shown in figure 28, the fraction

of the current carried by overflow through the sides of the cathode increases
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as the diameter is decreased. This occurs because the height of the over-
flow region is roughly independent of diameter for a given current density,
so that the overflow current varies about as D while the current through the
end goes as D2,

The effective voltage for heat transfer to the cooling system (see figure

29) also decreases with the cathode diameter. In this case, the depar-
ture from one dimensional behavior is caused by side radiation. The radia-
tive heat loss is roughly proportional to D, while the heat conduction toward
the cold end varies as D“ so that a decrease in diameter favors the former
process at the expense of the latter. The same effect shows up also in the
curves of effective voltage for cathode power loss, figure 30. Here, the
fact that the smaller cathodes are more strongly cooled (by radiation) than
the larger ones implies that the smaller cathodes must lose more power to
operate at a given current density. In accord with this argument, the ion
current fraction (see figure 31) also rises with decreasing cathode di-
ameter. The surface electric field (see figure 32) decreases with cathode
diameter because the decrease of surface current density, shown in figure
28, more than offsets the rise of « (see figure 31) in Mackeown's
equation (8a).

5. Dependence upon Cathode Material

The theoretical effects of low work function additives upon tungsten cathode
performance are illustrated in figures 33 through 39, for 1 inch by

1/8 inch cathodes operating in helium. The primary effect of such additives
is a reduction of tip operating temperature, as shown in figure 33. Pure
tungsten, even if it could be made to operate in the spotless mode (which is
doubtful), would approach its melting point (3653°K) at a current of a few
hundred amperes. In contrast, tungsten impregnated with barium oxide
operates, according to these calculations, below 2000°K over the en-
tire current range considered. This large difference in operating tempera-
tures is primarily a consequence of the difference in work functions assumed
(Table 6), but is also exaggerated by the presence of a greater tendency
toward arc overflow in the impregnated cathodes as shown in figure 34.

The reduction in surface temperature resulting from use of low work func-
tion additives significantly reduces the cathode losses. The effective volt-
age V. for heat transfer to the cooling system (see figure 35) is lower

by about a factor of 2 in barium oxide impregnated tungsten as com-
pared with pure tungsten. The differences in total power loss as represented
by Vj,ss are even larger (see figure 36), because the radiative loss in-
creases in a nonlinear fashion with increasing temperature. The reduction
in power requirements for the impregnated cathodes results in a lowering

of the cathode- fall voltage (see figure 32) and the ion current fraction

(see figure 38), in accordance with qualitative arguments given previously.
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The decrease in ion current fraction, in turn, entails a reduction in the
surface electric field, as shown in figure 39.

The predictions of cathode performance represented by figures 33

through 39 are based upon the hypothesis that the cathodes under con-
sideration are operating in the spotless mode in helium. It is very doubt-
ful that a pure tungsten cathode would obey this hypothesis. At the lower
currents (below about 20 amperes), even thoriated tungsten tends to operate
in the spot mode, as discussed in section V below.

6. Dependence upon Gas Properties

Figures 40 through 44 show the differences in theoretical character -
istics for a 1 inch by 1/8 inch thoriated tungsten cathode operating in the
spotless mode in three different gases, helium, argon, and nitrogen. The
tip temperature (see figure 40) is highest in helium and lowest in argon;
however, the differences are not large, covering a range of about 60°C.
These differences in tip temperature result mainly from the variation of
surface electric field, shown in figure 41, which in turn is a conse-
quence of the differences in ionic mass. Theion current fraction is notice-
ably lower in helium than in argon and nitrogen, primarily because the high
ionization potential of helium makes it possible for a smaller ion current
to deliver sufficient heat to maintain the cathode surface temperature.
Figures 43 and 44 show that the differences in overflow and heat
transfer to the cooling system are negligible under the assumptions upon
which the theoretical model is based.
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VI. EXPERIMENTAL STUDIES OF ROD SHAPED
THORIATED TUNGSTEN CATHODES

A series of experiments have been carried out to provide laboratory data for
comparison with the quasi one dimensional theory presented in the preceding
section. The objectives of this work were as follows:

1. To determine whether rod shaped, thoriated tungsten cathodes can ac-
tually be operated in the spotless mode, and, if so, under what conditions
spot mode and spotless mode operation occur;

2. To determine effective material property values for thoriated tungsten
operated as a cathode; and

3. To test the validity of the theory.

Since a major experimental program using sophisticated techniques would have
absorbed an excessively large fraction of the effort, these experiments were
intended to supply only those data which could be obtained using simple and
crude methods of measurement.

A. APPARATUS AND PROCEDURES

Figure 45 shows the special arc unit used in the experimental program. The
cathode is a cylindrical rod of 2 percent thoriated tungsten, embedded in a
copper base. A threaded stud on the bottom of the base mates with a socket in
the top of a water cooled holder. A number of cathodes having various dimen-
sions with exposed lengths up to 2 inches and diameters up to 1/8 inch have

been used. The cathode holder slides within a tubular support attached to the
bottom plate of the arc chamber, the bearing surfaces being two rubber O rings.
The holder is raised and lowered by means of a rack and pinion to adjust the

arc gap independently of cathode length. The anode is a 3/4 inch diameter
tungsten plate, brazed to a water cooled copper support. The top and bottom

of the arc chamber are water cooled metal; the side wall is a cylinder of clear
fused silica so that the arc and the electrodes can be observed visually and
pyrometrically during operation. Gas injection ports are provided in the bottom
of the chamber and exhaust ports in the top.

Power was supplied to the arc by a pair of Miller rectifiers, and regulated by
means of a large rheostat. The arc was initiated using a high frequency oscil-
lator.

In the experiments being reported, the following types of measurement were
made:
1. The steady state heat flow from the cathode to the cooling water was
determined by measuring the flow rate and temperature rise of the water.
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Water flow was regulated using a pump and measured with the aid of a
flowmeter. The calibration of the flowmeter was checked by measuring
the total effluent volume over a certain period of time, and was found to
be accurate. Inlet and outlet temperatures for the cathode cooling water
were determined using 0° to 50°C chemical thermometers. Steady values
of these temperatures, obtained after 3 to 5 minutes of arc operation at
fixed current, were measured.

2. Arc current was measured using a millivoltmeter connected across a
shunt. An 80 or a 200 ampere shunt was used, depending upon the
level of current being measured.

3. Cathode temperatures at various distances from the tip of the cathode
were measured using an optical pyrometer. The resulting brightness tem-
perature values were converted into 'true'' temperature assuming the cathode
to have the same spectral emissivity as pure tungsten. 33 Since the sur-
face was somewhat rough and not clean, the temperatures calculated by
this procedure might be a little too high. No allowance was made for re-
flective losses at the two silica glass/air interfaces traversed by the light
before reaching the pyrometer. The coefficient of reflection was esti-
mated35 to be about 0. 035 at each interface, corresponding to a total loss
of about 7 percent. This error would tend to make the calculated tempera-
tures too low, and thus might be partially compensated by an error in the
emissivity assumption.

4. For points other than the cathode tip, the distance of the spot viewed
through the pyrometer from the cathode tip was determined before or after
the arc run using a scale placed behind the arc chamber. Observation of
the scale during the run was precluded by the brightness of the cathode.
The error due to thermal expansion of the cathode during the run was esti-
mated and found to be negligible. However, it was found that the position
of the cathode tip as seen through the pyrometer changed by 1/32 inch when
the pyrometer's red filter was moved into position. This effect was at-
tributed to optical imperfection of the filter and was allowed for in reduc-
tion of the data.

5. Gas flow rate was monitored using a flowmeter and a gauge to measure
injection pressure.

6. Arc voltage was measured using a voltmeter,
7. The cathode-anode gap was determined either using the vernier scale
attached to the cathode holder or by viewing a scale placed behind the arc

chamber through the pyrometer.

8. The amount of arc overflow onto the side of the cathode was estimated
visually in terms of the cathode diameter.
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RESULTS

1. Changes of Cathode Properties with Operating Time

The cathodes used in these experiments were 2 percent thoriated tungsten.
A number of qualitative observations made during the early part of the
program suggested that the properties of the cathode material might be
changing gradually as the material was operated for prolonged periods at
high temperatures. To determine whether such changes were actually tak-
ing place, two special runs were made in which the tip temperatures of
new cathodes were measured pyrometrically as functions of time beginning
immediately after arc initiation,

Figure 46 shows the results of the first of these runs, which was carried
out at 16 amperes in helium using a cathode 1/16 inch in diameter and 5/8
inch in length. In this case, the tip temperature rises by nearly 400°K
during the one-half hour long run. Most of the rise occurs during the first
15 minutes of operation.

Figure 47 similarly shows tip temperature as a function of running time
for a 2 inch by 1/8 inch cathode operating at 52 amperes in a helium-argon
mixture. The temperature again rises substantially during the run. The
rise appears to be a little slower than for the 5/8 inch by 1/16 inch cathode,
probably because of the larger mass and greater thickness of the 2 inch
cathode. Figure 48 presents a series of photographs of this cathode dur-
ing the same run. The first picture, taken at 30 seconds after arc initia-
tion, shows the arc striking rather uniformly over the end of the cathode.
As the run progresses, the cathode attachment of the arc becomes more
and more asymmetrical until, at 12.5 minutes, the cathode definitely ap-
pears to be operating in the spot mode.

The visual appearance of the cathode itself changes during prolonged opera-
tion, especially at high currents. A new cathode has a bright, machine
finished surface. Cathodes which have been run at high temperature for
several hours, or even for shorter periods at very high current, have a
roughened surface in the region near the tip, apparently because of recrystal-
lization. Other qualitative observations tending to confirm the change of
cathode properties with ""hot time' are reported in the next section.

The rise of tip temperature with time presumably reflects an increase of
the effective work function of the cathode. Such a property change might
result from gradual loss of the low work function additive during high
temperature operation. It is clear that other properties of the material
might change to a certain extent at the same time, although the data pre-
sented thus far throw no light on this question.,
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The time dependence of cathode work function poses a problem in quantita-
tive studies such as those reported below. During the 3 to 5 minutes re-
quired for a heat flux measurement by the method used in this work, the
change in tip temperature for a new cathode is substantial, as shown by
figures 47 and 48. To avoid this difficulty, the quantitative experiments
in the present investigation have been made using cathodes which have al-
ready been '"run in'' at moderate currents for periods of one-half hour or
more, Figures 47 and 48 suggest that the change in tip temperature be-
comes very slow after the first one-half hour, so that the use of cathodes
conditioned in this way should provide reasonable stability of material
properties. This supposition is confirmed by the fact that reruns of cer-
tain cases on the same cathode after extensive periods of operation have
shown good reproducibility.

2. Qualitative Observations

The rod shaped cathodes have been operated in three gases, helium, argon,
and nitrogen. The visual appearance of the arc in the cathode region is
different in each of these gases, and is also different for new and used
cathodes. Figure 49 shows a 2 inch long, 1/8 inch diameter cathode
operating at four current levels in helium and argon. The exposure is the
same (0.5 second at /32 through a 2.0 neutral density filter on Polaroid
Type 55 P/N film, ASA 100) for all of the pictures in figures 48, 49,

and 50.

The cathode shown in figure 49 had been operated for several hours prior
to the time at which the photographs were taken, so that the pictures shown
in this figure are representative of the behavior of "used' thoriated tungsten.
As illustrated by the figure, the cathode operates in the spot mode in both
helium and argon at the lowest current. In argon, the spot mode persists
over the entire current range, but in helium a transition to spotless opera-
tion occurs with increasing current.

The behavior of a "new'' thoriated tungsten cathode is shown in figure 50.

In this case, the cathode appears to operate without a spot even at 10 amperes
in helium, but again runs in the spot mode at all currents in argon, even
though the argon runs were made first in this case.

Comparison of the photographs for argon and helium at a given current shows
that the tip is usually less bright in argon, except in the spot region. This
illustrates the fact that spot mode operation leads to a generally lower tip
temperature. Such observations can be explained by noting that the elec-
tron emission current is a very strong function of temperature, so that
contraction of the cathode attachment of the arc into a spot permits a given
current to flow from a much smaller area without a very large increase in
the temperature of the emitting region. Quasi-radial heat flow within the
cathode, then, permits most of the cathode tip to be at a substantially lower
temperature than in the spotless case.
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ANODE
MATERIAL . 2 percent thoriated
tungsten

| . .
M/// —_— CATHODE DIMENSIONS ° 2 x I/8 inch
CURRENT . 52 amperes

GAS . helium - argon mixture

CATHODE

(a) 0.5 minute (b) 3.5 minutes

(c) 75 minutes (d) 12.5 minutes

Figure 48 CHANGES IN APPEARANCE OF AN ARC OPERATING ON A NEW
THORIATED-TUNGSTEN CATHODE
62-5020
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MATERIAL © 2 percent thoriated tungsten (“used")

CATHODE DIMENSIONS . 2 x 1/8 inch

(a) Helium, 10 amperes (e) Argon, I0 amperes
(b) Helium , 25 amperes (f) Argon, 25 amperes
(c) Helium, 50 amperes - (g) Argon , 50 amperes

(d) Helium , 100 amperes (h) Argon, 100 amperes

Figure 49 APPEARANCE OF ARC IN HELIUM AND ARGON AS A FUNCTION
OF CURRENT (TWO INCH BY ONE EIGHTH INCH "USED"

THORIATED TUNGSTEN CATHODE)
62-5021
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MATERIAL . 2 percent thoriated tungsten ('"new")

CATHODE DIMENSIONS : 1/2 x 1/8 inch

(a) Helium ,10 amperes (e) Argon , 10 amperes
(b) Helium , 25 amperes (f) Argon, 25 amperes
(c) Helium , 50 amperes (g) Argon, 50 amperes

(d)Helium , 100 amperes (h) Argon, I00 amperes

Figure 50 APPEARANCE OF ARC IN HELIUM AND ARGON AS A FUNCTION
OF CURRENT (ONE-HALF INCH BY ONE EIGHTH INCH "NEW"

THORIATED TUNGSTEN CATHODE)
62-5022
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The observations on cathode operation in helium, argon, and nitrogen
may be summarized as follows.

a.

C.

Helium

1) '"New' cathodes

The arc operates invariably in the spotless mode (at least at the
current levels used in these experiments). The arc appears
symmetrical with respect to the cathode axis, and a considerable
amount of arc ""overflow'' onto the side of the cathode is noted at
some current levels, No contraction at the anode is apparent.

2) "Used' cathodes

The arc operates in the spot mode at low currents, but reverts

to spotless operation at high currents. However, on cathodes
which have accumulated a large amount of "hot time, "' the cathode
attachment of the arc is often asymmetrical, covering the end
surface of the cathode and overflowing to one side. In such
cases, a cathode jet sometimes appears.

Argon

1) '"New'' Cathodes

In a few instances, brand new 1 inch by 1/16 inch cathodes have
been observed to operate symmetrically, and apparently in the
spotless mode, in argon. After a few minutes, however, a spot
develops on the rim of the cathode end. In all cases, a sheath of
brilliant plasma covers the emitting region of the cathode. Dur -
ing symmetrical operation on new cathodes, little or no overflow
is visible. Slight contraction at the anode is generally noted in
argon.

2) '"'Used' cathodes

The arc operates invariably in the spot mode. The general tip
temperature away from the spotis lower than in helium operat-
ing without a cathode spot at the same current. At the higher
currents, a cathode jet appears io issue from the spot region.

Nitrogen

No '"new' cathodes have been operated in nitrogen during these experi-
ments. 'Used' cathodes appear to operate in the spot mode. A dis-
tinct, thin arc column is usually visible, and flits back and forth over
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the surfaces of the electrodes. The cathode surface shows signs of
local melting after operation in nitrogen, but no loss of material has
been detected. The general tip temperature of the cathode in nitrogen
is as high as, or higher than, that in helium. Figure 51 shows a1
inch by 1/16 inch cathode operating in nitrogen at 20 amperes. The
anode attachment is strongly contracted and terminates in an incan-
descent spot on the tungsten surface. At higher currents, material
is lost from the anode at a noticeable rate.

3. Heat Fluxand Temperature Data

The principal series of experiments to study cathode performance was
carried out using three cathode geometries (1 inch by 1/16 inch, 2 inch

by 1/8 inch, and 1 inch by 1/8 inch) and three gases (helium, argon, and
nitrogen). The cathodes employed were all "used'; i.e., previously run
for extended periods of time. The data obtained are summarized in

Table 8. In this table I denotes total current, and Qq total heat flow from the
cathode to its cooling water. j, and q; are the corresponding fluxes, based
upon the cathode cross sectional area #D2/4. The effective voltage Veff

for heat transfer to the cooling system is defined as

Vet = QT . (151)

x represents the distance from the cold end of the cathode, and T the absol-
ute temperature of the cathode side surface. In Table 8, the runs are
categorized according to gas type and cathode geometry, and within each
set are arranged in order of increasing total current. For each run, the
measured surface temperatures are arranged in order of increasing dis-
tance from the tip, the first value being the tip temperature in each case.

The electrode gap and gas flow are not given in Table 8, but have the
following values:

0. 25 inch for He and Ar
Electrode gap

0.125 inch for N

'0.23 gm/sec for He

Gas mass flow =¢(0.71 gm/sec for Ar
0.59 gm/sec for Ny

Based upon estimated errors in the measurement of water flow, water
temperature rise, and the potential drop across the shunt, the minimum
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C.

The

uncertainties in Qy and I are about 2 watts and 0.2 ampere, respectively.
Actual errors are probably larger than these values in some instances
because of fluctuations in water flow and arc current. The pyrometer
readings are probably accurate to within +50°C in brightness temperature,
but the ''true'' temperatures listed in Table 8 are more uncertain than
this because of a possible difference between the spectral emissivity of

the cathode and that of pure tungsten, and because of the presence of strong
temperature gradients in the surface region viewed through the pyrometer.

ANALYSIS OF DATA

thermal and electrical conductivities and total emissivity for pure tungsten

have been reviewed in section IV, In summary, the literature values are

with

The

It is

n

0.32

~
R
—
—
4
™
(2]
3
o
~

pure tungsten

B = 5.0 x 10~2 ohm—cm/°K®
pure tungsten
s = 1.234

thermionic constants for pure tungsten are34

7y 20 Kz

60 amp/cm
pure tungsten

¢ = 4.51 volts

clear, however, that these thermionic properties cannot be applied to

thoriated tungsten. The A and ¢ values must be determined for the particular
material being used, especially because there is good reason to believe that the

"use

d" cathodes, upon which the data of Table 8 are based, have different

thermionic properties from the original material.

The

other properties listed above may also differ to some extent from their

values for pure tungsten.

1. Total Emissivity

It is probable that the effective total emissivity for the '"used' cathode
material is somewhat higher than that for pure tungsten, since the cathode
surface is ''dirty" and also rather rough in the region which reaches high
temperatures during operation. With allowance for the effects of these
conditions, it is estimated that

€ > 04 . (152)
=



2. Thermionic Constants

The values of the thermionic constants A and ¢ can be estimated from the
measurements of tip temperature and current density pre sented in Table 8.
The argon and nitrogen data are not useful for this purpose, of
course, since the cathode always operates in the spot mode in these gases,
and the spot area has not been measured. The helium data must also be
rejected for those runs in which spot-mode operation or a large amount

of overflow occurred. The high current runs 7 to 10 also omitted,
because a considerable amount of overflow probably occurred in

these runs but was not visible owing to the extreme brightness of the
Joule heated cathode. The remaining data, which ought to be suitable
for estimating thermionic constants, are run numbers 3, 4, 6, 11,

13, 14, 15, 16, 18, 19 and 20.

The accuracy of the data is not good enough to permit determination of
both A and ¢. For this reason, the data are analyzed by assuming a value
for A and calculating a corresponding "effective'' value for ¢. Experimental
values of A for tungsten with low work function additives are usually very
low, 34 4f the order of unity. The present analysis assumes

A = lamp/cm2°l(2 . ‘ (153)

The current density is given theoretically by equation (111),

VC
TR ET=E o L (154a)
Vi
where
9 = 11609 ¢ — 4.4 VE (154 b)

and the surface field strength is given by Mackeown's formula (1391)
which can be approximated by

~ 1/4 = 1/2 1/4 .
= Y 1823 W _— . 154
E. T 873V, /" jg 7 (1823 W) <Vc+"1 (154c)
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Elimination of E. and 6 from these equations gives

Ve
Inj =InA +In (1+ — | +2InT
I

i 1/4
1/8
- — | 11609 6 - 130V, /

1s23w)l/8 j1/4 | (155)

C

VC+VI

This is now regarded as an equation for ¢ in terms of experimental values

of j and T and an assumed value (153) of the Richardson constant A. The
value of ¢ obtained is rather insensitive to the unknown value of v_; a
typical value V. ~ 5 volts is assumed for all cases. Then, with v} = 24.5
and WV = 4,

2

T

é = 8.61x107° | T <1n — o.z) + o34 | (156)
j

TABLE 9

ANALYSIS OF CATHODE DATA FOR EFFECTIVE WORK FUNCTION

Run Diameter Length io & o)
Number inch inches amp/cm? K volts
3 1/16 1 1021 3010 2.56
4 1/16 1 2062 3060 2.45
6 1/16 1 37149 3330 2.56

i 1/8 2 302 2800 2.61
13 1/8 2 313 2740 2.53
14 1/8 2 450 2920 2.64
15 1/8 2 664 3110 2,75
16 1/8 2 1243 3120 2.62
18 1/8 1 325 2820 2.58
19 1/8 1 639 2930 2,54
20 1/8 1 1213 3130 2,64
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Table 9 shows the results of applying this formule to the data on tip
temperature and current for the runs listed above. In this table, the sur-
face current density at the tip is approximated by j,, since there was little
visual indication of overflow in any of these runs and the computed value of

é is not very sensitive to j. The mean of the values shown in the last column,
together with its root mean square deviation, is 2.59 * 0.07 volts. In the
subsequent analysis, it is assumed that, for the "used' thoriated tungsten
cathodes,

¢ = 2.6 volts {(L57)

based upon A =1 a.mp/cmZ °KZ2, The current density-temperature relation
calculated from (156) using these values is compared with the data of Table 8
in figure 52. It is interesting, but probably not significant, that 157)
agrees fairly well with the value (¢=2.63, A = 3) listed by Nottingham34

for WH'Th,

3. Thermal Conductivity

The data of Table 8 also permit analysis for thermal conductivity. This
property can best be determined using temperatures measured at points
below the tip, where the effects of strong temperature gradients in the tip
region have largely died out and the heat flow is nearly one dimensional.
Data from all three gases can be used. However, it is best to restrict con-
sideration at this stage to data taken at low current densities where Joule
heating does not affect the heat flow to a major extent. This analysis for
thermal conductivity does not involve any of the ''arc'' relations pertaining
to the cathode fall zone or the surface, but only the heat conduction prob-
lem with radiative loss from the sides.

If the temperature distribution in the cathode were linear, the thermal con-
ductivity could be calculated using the simple relation K= q x/ (T-Tp). In
fact, this formula gives fairly good values when applied to the lowest
temperature data of Table 8, However, radiative loss of heat from the
side of the cathode is always significant in regions of the cathode surface
which are bright enough to yield a good pyrometer reading. For this reason,
it is desirable to use the quasi one dimensional heat flow theory of section
V B in carrying out the analysis. It is convenient to define

.2
2 BK
2_ BoeK s o

+
5D 0 5 )

s+1
i ; (158)
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Figure 52 CURRENT DENSITY VERSUS TEMPERATURE FOR '"USED"
THORIATED TUNGSTEN CATHODES IN HELIUM
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where C is the integration constant (106), determined from the tempera-
ture and heat flux at the cold end of the cathode. Then, equations (91)
become

B 8o¢K 1/5 T
v o= SDH (159a)
__. [80¢€¢K 1/5
Kn = VH — x (159b)

2BK j 2 —(s+1)/5
. 0 <8mK> (159¢)

" (s+1)H \SDH

The term qo2 on the right-hand side of (158) is much larger than the other
two terms, so that the experimental value of 9, gives a good determination
of H without knowledge of the exact value of K. Because of the exponent 1/5,
the quantity (80¢K/5DH)1/5 appearing in (159a and b) is insensitive to errors
in an assumed K value. Equation (159c) is somewhat more sensitive to
variations in K, but this has little effect upon the calculations since z is
small in the runs selected for thermal conductivity determination. Thus,
knowing only that K should be of the order of 1 w/cm°®K, one can determine
¢ and the quantity Kn with reasonable accuracy from experimental values
of q5, T, and x. The quantity

e ol O 1/5T0 (160)
O \spH

is not known accurately, since the temperature T, at the cold end of the
cathode was not measured in these experiments. However, the cathode is
embedded in a 1/2 inch diameter copper base which is screwed tightly into
a water cooled holder, so that T0 should not be much above room tempera-
ture. It is assumed that

T, = 300°K (161)

This assumption is most likely to be in error in runs with the 1 inch by 1/8
inch cathode. The unusually high heat flows obtained with this geometry
might force T, to rise appreciably above the value (161),

With y given by (159a), ¢, by (160), and z by (159c), one can calculate 7
from equation (94), using Table 3 to evaluate G(y,z ) and G(y, z).
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Then, since K7 is known from (91b), K can be obtained. The results of
applying this procedure to data from Table 8 are shown in Table 10.
The runs used have been selected to avoid excessively large values of z,
and tip temperature data have not been employed (with one exception). The
value B = 5,3 x 10-9 has been assumed in the calculations, on the basis of
a discussion presented below.

The thermal conductivity values shown in the last column of Table 10 are
of the correct order of magnitude, but vary considerably. It is noted that

a. The thermal conductivity values obtained from the argon and nitrogen
data are all essentially in agreement, independently of cathode geometry.

b. In the case of helium, the calculated K depends markedly upon the
cathode geometry. For the 1 inch by 1/16 inch cathode, the K values
are in the vicinity of 0.9, which happens to be roughly the value obtained
from the argon and nitrogen data. For the 2 inch by 1/8 inch cathode

in helium, K is calculated to be about 0. 65. For the 1 inch by 1/8 inch
cathode, the value is intermediate, near 0, 75.

These differences can be accounted for, at least qualitatively, by consider-
ing the effects of convective cooling of the cathode, convective heating of

the cathode base and holder, and variation of Tp with the total heat flow from
the cathode to the cooling water.

The gas flow field in the arc chamber is not known in detail, but presumably
contains large scale circulatory motions fed by the jets emerging from the two
injection ports in the bottom plate. Gas heated by the arc column must mix,
to some extent, with the surrounding cooler gas, and the gas flowing over

the surfaces of the cathode and its copper holder is likely to be at some
temperature above 300°K but far below the temperature of the arc.

The construction of the arc unit is such that the top of the copper holder for

a 2 inch cathode is about flush with the surface of the bottom plate. Thus,

a 2 inch by 1/8 inch cathode is immersed in the gas flow field in the chamber,
but its holder is not. Such a cathode operating in helium can lose a consider-
able amount of heat from its side by convective heat transfer to the gas.

The same type of cathode operating in argon or nitrogen will lose much less
heat by convection, because the thermal conductivities of these gases are

only one eighth that of helium.

A 1 inch long cathode operating in this arc unit has 1 inch of its base and
holder, with an area of about 4 cm?2, immersed in the heated gas. Itis
reasonable to assume that some heat transfer takes place from the gas to
this cold copper surface. This could account for the fact that the 1 inch by
1/16 inch cathode gives higher calculated thermal conductivity values than
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the 2 -inch by 1/8 inch cathode in helium. The same effect must occur also
with the 1 inch by 1/8 inch cathode, but, in this latter case, an additional
phenomenon may affect the results.

The temperature difference between the bottom end of the cathode and the
cooling water stream is proportional to the total heat flow from the cathode.
The proportionality constant involves the thermal resistances of the copper
base, the holder, and the interface between these two pieces. A lower limit
to the temperature difference for the case of a 1 inch by 1/8 inch cathode
discharging 40 watts of heat into its base can be estimated by considering
the base and holder as a single 1/2 inch diameter cylinder of copper 1.25
inches long, carrying a uniform heat flux. This gives AT = QL/KA ~ 25 °C.
Allowance for thermal resistance of the interface between the base and
holder, radial spreading of the heat as it goes from the tungsten into the
copper, and the reduction in cross section by the empty part of the socket
in the holder could increase this estimate substantially. The average of

the K values from argon data, excluding the run made with the 1 inch by

1/8 inch cathode, is 0.94 w/cm®K. The change AT in T, required to bring
the values from this excluded run into agreement with the mean of the other
values would be about 100°C. It is certainly believable that AT could be this
large.

On the basis of the preceding discussion, it is suggested that the thermal
conductivity values obtained by analysis of the data from 1 inch by 1/16
inch and 2 inch by 1/8 inch cathodes operating in argon are approximately
correct. The mean of these values is 0.94 £ 0.05 w/cm®K. In the subse-
quent analysis, the value,

K = 0.94 w/cm°K - (162)

will be assumed.

If experiments of this type are again undertaken in the future, it should be
possible to eliminate these sources of uncertainty by installing a suitable
anti-convection shield surrounding the cathode and a temperature sensor
at the bottom end of the cathode for measurement of T,.

4, Electrical Resistivity

The runs at high current provide data from which the electrical resistivity
temperature function for the cathode material can be estimated. As in the
preceding section, the analysis does not involve 'arc'' relations but only heat
conduction with Joule heating and radiative losses. The data are too few and
of too poor aquality to permit determination of more than one parameter in
the resistivity formula (87). In the present study, it is assumed that s in
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that formula has the value for pure tungsten (about 1.234), but that B might
differ somewhat from the value 5.0 x 10-9 ohm-cm/ °KS obtained from
figure 10.

Since the quantity H defined by equation ( 158) is nearly equal to qo2 , equa-
tions (159a, b) and (160) can be written approximately

I
¥ = (160ek)02 — (163a)
D0-2¢0-4
To
Yo = (1.60ek)?2 ___~ (163b)
D0-24 0.4
- xq00.6
n = (1.60eK)0: = (163c)
KD
Since y, is small enough that G(¥g,2) = yp,equation (162) becomes
1+ Yy TG,z . (164)
Since ¥,Y;, and 7 can be calculated from the experimental data, (164)
can be solved for z. Then, equation (159c) gives an estimate for B,
(s+1)zq02 80¢K LD
B (165)
2K G <5Dq02

Table 11 and figure 53 illustrate the application of this procedure to
high current data selected from Table 8. No helium data are used be-
cause the measured q; values for runs in this gas are probably affected
significantly by convective heat transfer, as discussed in the preceding
section. Tip temperature data are also excluded because of spot mode
operation in argon and nitrogen, and data from the 1 inch by 1/8 inch
cathode are omitted because of unreliability of the T, estimate (161).
Table 11lshows that, in spite of this screening of the data, the scatter in
the computed B values is large. The reason for this scatter can be seen
from figure 53, in which the ¥,G values computed from the data are plot-
ted on top of the family of curves representing the function G(¢, z). The
horizontal and vertical bars on the points represent the estimated uncer-
tainties inG and ¢, respectively, arising from estimated uncertainties of
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+ 0.05 centimeter in x and + 50°K in T. The diagonal bars passing through
the points indicate the uncertainties resulting from a possible error of 2
watts in the measurement of the total heat flow Q, from the cathode to its
cooling water. An error in Q, gives rise to one in the heat flux 9, » and
thus affects the position of the experimental point in figure 53 in accordance
with equations (163). It is seen that the uncertainties arising from pos-
sible errors in the heat flow measurements are generally a good deal larger
than those originating in uncertainties inx and T, so that the latter can be
neglected. The two ends of each diagonal bar in figure 53 thus define
upper and lower limiting values of z which would be consistent with the
experimental data in view of their limited accuracy. Substitution of these
limiting values into equation (165) gives corresponding upper and lower
limits to B, provided that the q; in (165) is also assigned its corresponding
upper and lower limits. The results of applying this error analysis pro-
cedure to the data of Table 11 are shown in figure 54, The B values of
Table 11 are represented by circles, and the vertical bars connect the
upper and lower limits of accuracy. It is apparent that most of the runs
provide only an order of magnitude for B. However, the data from run 27
set the reasonably narrow limits B = (6.4 +1.1)x 109 ohm-cm/°KS .

TABLE 11

ANALYSIS OF CATHODE DATA FOR ELECTRICAL RESISTIVITY

Gas Run Diameter|Length| x T z B
Number| inch inch |[cm °K 10~ 9ohm-cm/ °K®
Argon 25 1/16 1 2.14 2070 0.40 19
1.817 1780 0.44 8.7
Argon 26 1/16 1 2.14 2250 0.88 6.3
1.79 1820 1,12 8.2
Argon 27 1/16 1 2.14 2520 1.65 6.4
Argon 31 1/8 2 3,73 1700 0.39 2.6
Nitrogen 44 l 1/8 2 3.89 1720 0.53 3.7

The literature value of B for pure tungsten, 5.0 x 10-9, is below these

limits. However, the electrical resistivity of two specimens of the

thoriated tungsten cathode material has been measured by Peterson36 at

23°C. The resulting values (6.04 x 106 and 5.74 x 10~6 ohm-cm) give an
average B of 5.3 x 10-9, which is just at the bottom of the range of values
consistent with the data from run 27. This agreement between electrical
resistivity as determined from high temperature and room temperature

data provides at least a rough confirmation of the correctness of the value

s = 1.234 for the temperature exponent in (87). Peterson's room temper-
ature value is selected as the '""standard' value of B for subsequent calculations:
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B = 5.3x10"? ohm-cm/°KS (166)

D. COMPARISON OF THEORY AND EXPERIMENT

The experiments under discussion are significantly affected, as shown in the
preceding section, by two phenomena which are not represented in the theoretical
model. The rod shaped thoriated tungsten cathodes operate in the spot mode in
argon and nitrogen, and even in helium at low currents, while the model assumes
spotless mode operation. Furthermore, the performance of the cathode in
helium is influenced very considerably by convective heat losses. The fact that
the cold end temperature T; was not measured introduces a further uncertainty
which becomes fairly large in the case of the 1 inch by 1/8 inch cathode, as
shown by figure 26. As a result of these factors, the experiments have pro-
duced no data which provide an unambiguous quantitative test of the theory.
Nevertheless, a comparison of the experimental results with theoretical predic-
tions is worthwhile, because it shows just what the discrepancies are and tests
the usefulness of the model as a basis for rough estimates of cathode performance.

Figures 55, 56 and 57 are plots of the heat transfer to the cathode

cooling system versus total current. The curves in these figures are based

upon theoretical values calculated from the quasi-one-dimensional model, while
the points represent the experimental data for the three cathode geometries,
Figure 55 shows the results for helium. The fact that the curve for the 2

inch by 1/8 inch cathode lies above the corresponding experimental points is
attributed mainly tc the neglect of convective heat losses in the theoretical model,
The similar discrepancy for the 1 inch by 1/8 inch cathode is believed to result
from the same deficiency in the model, and from the assumption of a value (300 °K)
for the cold end temperature which is unrealistically low in the case of this
cathode geometry. The approximate agreement between theory and experiment
for the 1 inch by 1/16 inch cathode is considered fortuitous; it probably occurs
because the convective heat loss from the side of the cathode is roughly balanced
by convective heating of the cathode base and holder, which are partially im-
mersed in the heated gas of the arc chamber in this case. The theoretical curve
for this geometry is not extended beyond 95 amperes, because, at this current,

A is already slightly larger than unity. For higher currents, the perturbation
calculation of overflow effects used in the model becomes completely unrealistic.

In the cases of argon and nitrogen, the applicability of the model is questionable

because of the occurrence of spot mode operation in these gases. Nevertheless,
figures 56 and 57 show that, as in helium, the model reproduces the general
trend of the experimental heat transfer data reasonably well.

Figures 58 through 63 present a comparison of experimental and theroetical
axial temperature distributions for cathodes of the three geometries operating

in helium. In each figure, the curve is based upon calculations using the
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theoretical model, while the points represent pyrometric measurements of
temperature at various positions along the side of the cathode. The short broken

line beginning at x = 0 in figures 58 and 59 indicates the actual tempera-
ture gradient at the cold end, calculated from the experimental heat flux meas-
urement assuming K = 0.94 w/cm°K. This broken line and the experimental

points near the hot end, taken together, sketch out an approximation to the actual
temperature distribution in the cathode. (Cold end temperature gradients are
not indicated in figures 60 to 63, because the heat transfer data for the

1 inch cathodes are believed to be affected significantly by convective heating of
the cathode base and by an unknown increase in the cold end temperature in the
case of the 1 inch x 1/8 inch cathode.)

It is apparent from the figures that the actual temperature distribution is, in all
cases, more concave upward than the theoretical distribution. In addition, the
experimental tip temperatures are generally higher than the values predicted
by theory. These differences can be accounted for, at least qualitatively, in
terms of the hypothesis that substantial convective heat losses occur from the
side of the cathode in helium. Such heat losses reduce the temperature in the
midsection of the cathode, but cannot lower the tip temperature because the
total current is '"given.'" Thus, such losses tend to reduce the temperature
gradient at the cold end of the cathode and to increase the gradient at the hot
end, as shown in figures 58 to 63. Moreover, the substantial increase of
the temperature gradient in the tip region drastically reduces the amount of

arc overflow, and, thus (since the total current is given), increases the current
density through the end of the cathode. The rise in current density entails an
increase in tip temperature, in agreement with the data shown in the figures.
This phenomenon is an instance of the general rule, pointed out in section IV E,
that stronger cooling of the cathode tip region tends to raise the tip operating
temperature.

In summary, the quasi-one-dimensional theory for spotless mode operation of
rod shaped cathodes correctly predicts general trends in the variation of cathode
temperature and heat transfer with cathode geometry and current, but a number
of quantitative discrepancies occur. Some of these discrepancies, such as the
dependence of calculated thermal conductivity upon cathode geometry in helium,
are unrelated to the operation of the rod as a cathode, and simply betray the
occurrence of heat transfer processes not included in the theory. Others,
particularly those in the tip temperature and temperature gradient, can be
accounted for at least partially by the effects of convective losses, but may also
reflect errors in assumed material property values, in the approximations of
the quasi-one-dimensional theory, or in the relations upon which the basic
cathode model is based.
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VII. DISCUSSION

The operation of a thermionic cathode is a complex system of coupled physical
processes occurring in the plasma of the cathode fall zone, at the plasma
cathode interface, and in the cathode interior. The present report has set
forth a theoretical model for this system. Although many of the important
processes are represented by crude approximations, this model is physically
complete in that it permits ab initio calculation of cathode performance solely
from geometrical considerations and the physical properties of the cathode and
the gas.

The essential physics of thermionic cathode operation, as viewed from the
present perspective, may be summarized briefly as follows. Flow of electric
current between the cathode and the plasma occurs predominantly by ther-
mionic emission of electrons from the surface. Since each electron emerging
from the surface carries away an energy equal to the thermionic work func-
tion, such a steady flow of emission current is possible only if energy is
simultaneously supplied to the surface in sufficient quantity to balance this

and other losses. In most cases, the bulk of this energy is provided by ion
bombardment. Thus, although electron emission is the main charge transfer
process, it can only occur if a substantial fraction (about 10 percent or more)
of the current is carried by positive ions drawn from the plasma. Because of
their greater mass, the ions move much more slowly than do the electrons in
the electric field adjacent to the surface, and this region, therefore, contains
a net positive space charge. This space charge layer is directly responsible
for the cathode fall of potential and for the very high electric field intensity at
the cathode surface. The thermionically emitted electrons are accelerated by
this field to an energy equal to the cathode fall, and deposit most of this energy
in the plasma near the cathode. The plasma absorbs this energy, in the steady
state, by production of ion electron pairs. Thus, at least up to a point, an
increase in electron emission current density leads to an increase in electron
"beam'' energy deposited in the gas, an increase in ion production, an increase
in ion current to the surface, and an increase in surface heating due to ion
bombardment. However, there is an upper limit to the ion current density
which can be drawn from the plasma at a given pressure; it is given by the

flux of ions across an arbitrary plane surface in a fully ionized gas. Once

this limit for the ion current density has been reached, further increases of
electron emission current density withdraw additional work function energy
from the surface without leading to a compensatory increase in ion bombard-
ment heating.

The net heat entering the cathode surface, after allowance for work function
and radiative losses, flows by conduction into the cathode interior. The tem-
perature and heat flow distributions inside the cathode are governed by the
steady state heat conduction equation. A given distribution of heat flux over
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the surface defines a solution of the cathode heat conduction problem which, in
turn, gives a temperature distribution over the surface. This temperature
distribution determines a distribution of electron emission current which, by
the ion production and bombardment mechanisms discussed in the preceding
paragraph, leads to a certain distribution of net heat flux into the surface.

This heat flux distribution determined by the temperature field inside the
cathode must be identical with the original distribution determining the tem-
perature field as a solution of the heat conduction problem for the cathode in-
tetior.

No general methods are available at present for obtaining accurate analytical
or numerical solutions of this rather intricate problem, but the main features
of the system have been studied using approximate means. For a strongly
cooled cathode, it turns out that the problem has no solution unless the ion
current density is equal to its kinetic theory limiting value over a major part
of the emitting region. Thus, the operating region of a strongly cooled cathode
contracts to form a spot in which the current density is limited essentially by
the density of particles in the plasma of the cathode fall zone. An increase of
pressure raises this particle density, and hence increases the current density
and the temperature of the surface in the spot region.

In a cathode which is sufficiently poorly cooled, the heat conduction equation
requires a relatively large region of the cathode to be hot. Electron emission
from the surface, then, leads to a relatively low current density spread over
a large area. The resulting widely distributed moderate heat flux matches the
requirements of the heat conduction problem for this case. Normally, the ion
current density is below its limiting value over the entire surface. This type
of cathode operation, in which the current density is limited only by the re-
quirements of the cathode heat conduction problem, is tentatively identified
with the spotless mode. The theory, in its present somewhat schematic form,
predicts that the current density distribution over a cathode operating in the
spotless mode should be pressure independent.

It is not yet altogether clear how the arc '""chooses'' between these two modes
and, generally, between different possible solutions of either type. It is likely
that, for some geometries and situations, the problem admits only a single
nontrivial solution. However, circumstances clearly exist in which two or
more solutions are possible mathematically. One instance is the case of a
well cooled cylindrical cathode. It appears that this problem should admit an
axisymmetric solution with the spot at the center of the end surface of the
cathode. Experimentally, however, another solution is '""chosen'' with the spot
on the rim of the end surface. Perhaps, problems such as this can be re-
solved by performing a stability analysis based upon the transient version of
the problem.
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ViIi. RECOMMENDATIONS FOR FURTHER WORK

The theory provides, in its present form, a conceptual framework for discuss-
ing and analyzing thermionic arc cathode behavior. Qualitative comparison
with experimental data indicates that this framework is approximately correct.
However, a considerable amount of additional work is needed to develop this
model into a quantitative theory which can be used confidently in the design of
cathodes for high pressure, high enthalpy plasma generators. The lines of
effort which appear most likely to be fruitful are listed below.

1. Numerical Procedures for Solving Cathode Model

A method for computing accurate solutions of the model for particular
cathode geometries is needed both for testing the model's validity and for
engineering applications. Possible approaches to the development of such

a numerical procedure have been discussed in paragraph 1 of section
IV D.

2. Processes in Cathode Fall Zone and at Surface

The relations presented in sectionIIIfor describing processes in the
plasma and at the surface are all rather crude approximations. A num-
ber of these relations can clearly be improved. For example, the
Mackeown formula (6) for the electric field at the surface should be
modified, as shown by Ecker,12 to take account of back diffusion of elec-
trons from the plasma and thermal velocities of the ions. A somewhat
detailed theory of charge and energy transport in the ion production zone
should be developed, including some of the effects neglected in section III,
such as Joule heating of the gas, heat conduction from the gas to the sur-
face, radiative losses, and energy deposition in the gas by Auger ejected
electrons from the surface and rebounding neutralized ions. Similarly,
the cathode surface energy balance should be refined to include heat con-
duction from the gas and accommodation coefficient effects. Once these
effects have been properly formulated, they should be incorporated into
the cathode model.

3. Quasi-one-dimensional Cathode in Spot Mode Operation

It should be possible to obtain, from the theory, a criterion for spot mode
operation on a rod shaped cathode. In addition, an approximate theory for
a rod shaped cathode operating in the spot mode can probably be assembled
by combining the existing quasi-one-dimensional theory (without overflow)
with the approximate spot theory of paragraph 3 of sectionIV D. Such an
approximate theoretical model would be useful for analysis of experimental
data for rod shaped cathodes running in nitrogen and argon.
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4. Experiments

A further attempt should be made to obtain experimental data for quantita -
tive comparison with the theory. It appears that this should be possible
with some modifications of the apparatus described in section VI. A ther-
mocouple or other sensor should be added to permit direct measurement
of the temperature at the cold end of the cathode. An attempt should also
be made to obtain interpretable data from operation in helium by reducing
the convective heat transfer effects with the aid of a shield surrounding the
cathode or a suitable change in the geometry of the arc chamber. Further
experiments with other cathode geometries should also be valuable.

5. Theory for Cold Cathodes

There is considerable interest, for plasma generator applications, in cold
cathodes such as water cooled copper with a magnetic field applied to move
the spot over the surface. Several experimental investigations have shown
that the current enters a cold cathode through a number of ""microspots,"
each of which carries a current density of 107 or 108 amp/cmz. The prob-
lem of explaining the mechanism of charge transport in these microspots
has received much attention, 6-9, 16-17, 37 various authors have invoked
field emission, T-F emission, electron ejection by impact of excited atoms,
and other processes. The most plausible assumption appears to be that

the current is transported predominantly by the general mechanisms of ion
neutralization and thermal field emission of electrons rather than by
""special'"' mechanisms involving excited atoms. It would be a valuable
exercise to attempt construction of a '""complete' model for cold cathodes

on the basis of this assumption. Other phenomena whose effects should be
included in the model are Joule heating and heat conduction in the cathode,
ion bombardment heating, space charge, kinetic theory limitations on ion
current density, ion production in the gas, magnetic pinch pressure, electric
pressure on the surface, and vaporization of cathode material.
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X. APPENDIXES

NUMERICAL PROCEDURE FOR COMPUTATION
OF SURFACE HEAT FLUX AS A FUNCTION OF
SURFACE TEMPERATURE

PROGRAM FOR SOLUTION OF QUASI-ONE-
DIMENSIONAL CATHODE MODEL
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APPENDIX A

NUMERICAL PROCEDURE FOR COMPUTATION
OF SURFACE HEAT FLUX AS A FUNCTION OF
SURFACE TEMPERATURE

The net heat flux into the surface, q,, is determined as a function of surface
temperature Tg for a given cathode fall voltage V. by the relations (54)through ‘59),

4 = j; (Ve + Vf = @) — jo b — oeTgH (54)
-6/T

je = AT e . (55a)
6 = 11609¢ - 4.40 VE_ (55b)
E. = 873 v, /4 [as23m1/2j; — j11/2 (56)

i; = minlaj/(1-a), ()max) (57)

e = VAV % V) (58)

. p‘e

Omax = BrMKT,, . (59)

Among the quantities appearing in these equations, M, V;, and VW are gas proper-
ties, and ¢, A, and ¢ material properties of the cathode. The gas temperature
T, in the ion production zone under conditions of full ionization is about 0.15
Vi/k . The cathode fall is taken as an input parameter (in place of the total
current). Thus, a is known from (58), The problem is to calculate values of
qg corresponding to known values of T,. This can be accomplished most read-
ily by introducing the nondimensional temperature,

r=T,/60 |, (167)

in place of T4 as the independent variable of the computation. Then, (55a)
becomes
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= A(07)? e—1/r (168)

Je

With given r, (168) is rather insensitive to uncertainty in 8. Hence, one can
proceed as follows:

1. Assume the initial approximation 6 ~ 11609 &.

2. Calculate j, from (168)

3. Calculate j; from (57)

4. Calculate E. from (56)

5. Calculate an improved value of 6 from (55b)

6. Repeat calculation of j,, j; with new 6. Also calculate T, from (167)
7. Calculate q3 from (54) using j,, b T values from step (5). |

The procedure converges so rapidly that no further iterations are usually
required.

-176-



APPENDIX B

PROGRAM FOR SOLUTION OF QUASI-ONE-DIMENSIONAL
CATHODE MODEL

Figures 64 to 69 present a FORTRAN listing of the program for solving the
quasi-one-dimensional cathode model (139).

FORTRAN Symbol Mathematical Symbol FORTRAN Symbol Mathematical Symbol

The correspondence between
FORTRAN symbols used in this program and the mathematical notation em-
ployed in this report is as follows:

D

XL

L0

TAU

VI

PHI

XK

EPS

ZC

THETAO

THETA

TNP
TN

XLAMBD

D

-177-

Vo
vC

XJO0

PSIS

PSIO

ETAS

DELTA

EC

XI

VR

Qo0

ALPHA

TS

QE

\%

Ve

o

AV

qomD?/4

qE'ﬂD2/4 .



10
11

12

67
68

66
14

X

X

X

QUASI ONE DIMENSIONAL CATHODE MODEL WITH QVERFLOW

ARGF (X 9Z ) =] e O+ X% %52 % X%#% (S+] )

COMMON SsCGoCVIEPSsXKsBsAIPHI sDTNPOSFF

DIMENSION D(10) sXL(10)9TO(5)sTAU(25)sW(5)sVI(5)sPS1(20)9ETA(20)

D® 600 I=1sNG

D® 500 J=1sND

D@ 400 K=1sNL

D® 300 L=1»sNTO

D® 200 M=1sNTAU

WRITE QUTPUT TAPE 595eW(I)eVI(I)sD(J)oXL(K)TO(L)

FORMAT (5H]1 W=F76395H VI=F6e394H D=F5¢394H L=3F5.295H TO=F5.0)

MM=1

NTH=]

NDEL=1

NTRY=0

THETAO0=11609%PHI

THETA=THETAO

RADC=9,07E~12#EPS/XK/D(J)

PHMC=2 ,#B/ XK/ (S+1e)

CALL START (TAU(M)sD(J)sVI(I)sTNPsDTNP)

GO To 11

TNP=TNP+DTNP

MBS =0

INTP=]

TN=THETA#TAU(M)

RF=A®TN®#2%#EXPF (=10/TAU(M))

RADP=5 (6 TE~12%EPSH#TN#®#4

CONP=XK#TNP

TKD=THETA#XK#D (J) #TNP#%#2%#0,5/TN#*%2

XLAMBD=(2+*RADP-TKD+SQRTF( (TKD=2¢*RADP ) #%#2+4 % (CONP*#2-RADP*#%#2) ))
#0657/ (CONP-RADP)

VO=XLAMBD*TKD/RF

VC==0e5% (VI(I)=PHI)+05%SQRTF((VI(I)+PHI ) ¥#244,%V](])%VQ)

XJO=RF#(1e+VC/VI(I))/(1e+XLAMBD)#%2%(] o4+ (1e+XLAMBD ) #4 ¢ *TN*#*2
/D(J)/THETA/TNP)

C=TNP##2-RADCH*TN##5+QHMC#XJO* %2 #TN**(S+]1,)

NTRY=NTRY+1

IF(NTRY-NMAX)66+66967

WRITE QUTPUT TAPE 5+68sTAU(M) sVCosTNPsCsDELTASZsTHETA

FORMAT (21H ITERATI®ON STCP TAU=F6e395H VC=FB8e396H TNP=1PE1lQe3s
4H C=E10¢3+8H DELTA=E1Oe39s4H Z=0PF8¢498H THETA=1PEL1Qe3)

GO T® 200

IF(C)18+18514

PSIS=(RADC/C)#%#04,2%TN

PSIO=(RADC/C)##0,2%#TO(L)

Z=@HMCEXJO* % 2% (RADC/C)#% (~042%(S+1e))/C

ETAS=SQRTF(C)# (RADC/C)#%#0Q42%XL(K)

GO TO (19990) sMM

Figure 64a FORTRAN LISTING OF MAIN PROGRAM FOR SOLUTION OF
QUASI-ONE-DIMENSIONAL CATHODE MODEL
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19
15

17
18
16
20

22

21
23
27
28

29

26
24

25

35

40

41
42

90

200
300
400
500
600

X

IF(Z-2C)16915915
QARG=ARGF (PS1S5+2)

IF (QARG-CARG) 18918917
DARG=5#PSIS##4=(S+10) #PSISH¥S*Z
IF(DARG) 16918518

NTH=1

Go Te 10
DELTA=ETAS-G(PSIOsPSISs2)
IF(DELTA)20921921
DELTAN=DELTA

TNPN=TNP

GO TO (22+25)sINTP

NDEL=2

NTH=1

GO TP 10

GO TO (23926)sNTH

GO T@ (27+24)sNDEL

MBS=MBS+1

IF(MBS-MBST@P)28+28+29

TNP=TNP-0+5%#MBS*DTNP

GO To 12

WRITE QUTPUT TAPE 5930sTAU(M) sVCsDELTASZsPSIS»TNP

FORMAT (22H BACKSPACE ST@OP TAU=F6e395H VC=F8¢3+8H DELTA=
1PE10e394H Z=OPFB8e4s7TH PSIS=FB8e4s6H TNP=1PE10Qe3)

GO To 200

TNP=TNP-DTNP

GO To 12

TNPP=TNP

DELTAP=DELTA

ATNP=DELTAP#*(TNPP-TNPN)/ (DELTAP-DELTAN)

TNP1=TNPP-ATNP

IF(ABSF(TNP1-TNP)-CTNP%TNP) 4040935

TNP=TNP1

INTP=2

GO TO 12

TNP=TNP1

F=16900¢*SQRTF (A) #VC*##0,25#SQRTF(VC/VI(1)*SQRTF(1823+%W(1))-1e)
#TAU(M) *EXPF(=045/TAU(M) )/ (1 +XLAMBD)

THETAL1=0e5% (2 #THETAQO+F ) =0« 5%SQRTF (F**2+4 *F*THETAO)

IF(ABSF(THETA-THETAL)-CTHETA) 41941942

MM=2

THETA=THETAL

NTH=2

NDEL=1

GO To 11

CALL @UTPUT (THETAsXJOsCoTO(L)*D(J)9VCIPSISIPSIO9sZsXLAMBD»TN»

X TNPsETASsVI(I)sTAU(M) s XL (K) sRADC s @HMCoRF)

CONTINUE
CONTINUE
CONTINUE
CONT INUE
CONTINUE

Figure 64b Concluded
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SUBROUTINE START (TAUMsDJsVIIsTNPsDTNP)
COMMON S»CGICVIEPSsXK9BeAsPHI sDTNPOFF
RADC=9,07E-12%#EPS/XK/DJ
PHMC=2  #B/ XK/ (S+1le)
THETA=11609.%#PH]
TN=THETA#TAUM
RF=A#TN®##2#EXPF (-1e0/TAUM)
RND=]1 ¢=0e3885E+24# XK #BRARTN®##(S~]1, ) *EXPF(=2¢/TAUM)/EPS##2
X /(S+1e)/THETA®RS2
IF(RND)7019701+702
702 TNPI=SQRTF((4¢538E-12#EPSH#TN®#%#5/XK/DJ)*(1+SQAQRTF(RND)))
RADP=5,6TE-12*EPS®#TN##4
CONP=XK#TNPI
TKD=THETA#XK#DJ#TNP | ##280,5/ TN##2
XLAMBD= (2« *RADP-TKD+SQRTF( (TKD=2*RADP ) # #2444 * (CONP®* %2 -RADP#%#2) ) )
X #0657/ (CONP-RADP)
VO=XLAMBD#TKD/RF
VC==0e5#(VII-PHI)+05%#SQRTF((VII+PHI ) ®#244,%Vy] [#y@)
XJO=RF#(1e+VC/VII)/(1e+XLAMBD ) ##2% (] o4+ (]1e+XLAMBD) #4¢ #TN®#2
X /DJ/THETA/TNPI)
RND2=RADCH#TN#25-QHMC#XJO*H2HTN##(S+],)
IF(RND2)7015701»703
703 TNP=SQRTF (RND2)
IF(TNP=DTNPO/FF)T70197115711
701 TNP=DTNPO
DTNP=DTNPO
GO T@ 750
711 DTNP=FF#TNP
TNP=TNP-DTNP
750 RETURN

Figure 65 FORTRAN LISTING OF SUBROUTINE START
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301
302

303
304

305

FUNCTI®N GI(X0sX1sZ)

ARGF (XY ) =10+ XEHS5-YRXE##(S+],0)
INDF(XeY)=1e0/SQRTF(ARGF (XsY))

COMMON SsCGICVIEPSsXK9BsA*PHI o»DTNPOSFF
Q=0.0

DX=0e1#(X1-X0)

G=0.0

X=X0

DG=DX#( INDF (X9Z ) +4e#INDF (X+DX9Z)+INDF (X+2%DX0Z)) /30
X=X+2,#DX

G=G+DG

IF(X-X1+10E-6)302+303+303
IF(ABSF(G-Q)~-CG) 30593059304

DX=0e5%#DX

Q=G

GO Te 301

RETURN

Figure 66 FORTRAN LISTING OF FUNCTION G
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€02¢€02¢202(9-30°T+1IX-X)41
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oX=X

0°0=A

(OX=TIX)#T°0=XQ
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SUBROUTINE DISTAN (XO0eX19ZoPSIVETA)
ARGF (X oY) =] o0+ XBRS-YRXER(S+],0)
INDF(XsY)=1e0/SQRTF(ARGF (XsY))
COMMON S+CGICVIEPSsXKeBosAsPHI sDTNPO oFF
DIMENSI®N PSI(20)ETA(20)
Q=0.0
DX=0005% (X1-X0)
DXPRNT=DX

801 G=0.0
X=X0
XPRNT=X0+DXPRNT
IP=]

802 DG'D"‘INDF(XOZ)*QQ'INDF(X4Dx02)01uDF(X*ZQ'DXOZ))/300
X=X+2,2DX
G=G+DG
IF(X-XPRNT+1,0E-6)810+810+811

811 PSI(IP)=X
ETA(IP)=G
IP=[P+]1
XPRNT=XPRNT+DXPRNT

810 IF(X-X1+1.0E-6)802+8035803

803 IF(ABSF(G-Q)-CG)8059805+804

804 DX=0.5#DX
Q=G
Gé T 801

805 RETURN

Figure 68 FORTRAN LISTING OF SUBROUTINE DISTAN
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As originally written, the program employs a special input routine (ENTERVAL)
which is used on the Philco 2000 computer at Avco RAD. Since this routine is
not generally available at other computing centers, the input statements have
been omitted from the FORTRAN listing shown in figure 64, To prepare the
program for operation on any machine with a FORTRAN compiler, it is neces-
sary to add suitable input statements compatible with the particular machine.
There are 27 input variables:

Suggested
Variable Value Significance
D cathode diameter (centimeters)
XL cathode length (centimeters)
TO temperature of cold end (°K)
TAU Tps/0
w molecular weight of ions (gm/mole )
VI ionization potential (volts)
ND number of D values
NL number of XL values
NTO number of TO values
NTAU number of TAU values
NG number of gases
A Richardson constant (amp/cm? °K?2)
PHI work function (volts)
XK thermal conductivity (w/cm °K)
B resistivity constant in (87) (ohm-cm/ °K8)
S temperature exponent in (87)
EPS total emissivity
DTNPO input value of DTNP (°K/cm)
zc z. (95)

c

MBSTQP 10
CTHETA 1s

number of permissible iterations through statement 28

convergence criterion for THETA (°K)

CG 0.001 convergence criterion for numerical integration to
obtain G(XO0, X1, Z)

CARG 0.01 criterion for minimum value of ARGF (X, Z)

CTNP 0.0001 convergence criterion for TNP

Cv 0.001 convergence criterion for numerical integration to
obtain V(X0, X1, Z)

FF 0.2 factor for calculating DTNP (statement 711)

NMAX 50 number of permissible iterations through statement 12
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The variables which are dimensionalized are indicated in the DIMENSI®N
statement of the main program. D, XL, TO, and TAU are all indexed independ-
ently, but Wand VI have the same index I. The suggested values for the
control variables are intended as rough guides for getting the program into
operation, and can be modified on the basis of experience to give better ac-
curacy or shorter running time.

The flow chart for the main program between statements 5 and 200 is shown in
figure 70. This is the section of the program which solves equations (139)
for the principal unknowns. The following remarks are intended to aid in a
study of the program.

1. Subroutine START selects initial values for TNP and DTNP which will
enable the main program to find the correct TNP without an excessive
number of passages through the incrementing statement, 10. The idea
underlying this calculation is that the correct value of TNP is of the same
order of magnitude as the larger of the two values which make C (139f)
equal to zero,

2 8o¢ 2B TnsS+1 2
0! i@ T ’, — T b — 3 16
RS SKD 0s (s+1)K 0 {169}

Now, jo is given by {139i and j), This variable is important in (169)
only if it is large, and then it can be approximated roughly by

TS
in ~ . 170
Jo DOTns - ( )

Substitution of (170) converts (169) into a quadratic equation for T,,s'2

The desired solution for Tns’ is

= = 1/2
doeT O 25 KAB T, 51 =2/7
BT et fy o e . (171)
55D 202 & (s+1) &

To improve on this rather crude value, START performs one loop of an
iteration using equations (144), (145), (146), (147), and (169)

and thus arrives at an improved estimate of the upper value of TNP for
which C= 0., If FF* TNP is greater than or equal to DTNP0O, DTNP is taken
equal to FF times the calculated TNP, and these values are returned to the
main program, If FF* TNP is less than DTNPO, TNPand DTNP are both
taken equal to DI'NPO, :

-187-



002 ANV §
SINIWILVIS NIIMLIIE WYHDOUd NIVIN ¥Od LYVHD MOTd oL 2andrg

2NN 1 =730N
2 = HIN
@ IVLI3HL = VAIHL

_ VA3HLD 5 (IVAIHL-VLIHL) 458Y|  ON e T

IVA3HL
4
IdNL=dNL

®

$3A

0 > 9¥va

N

dNL = NdNL

$3A

V1130 +=NV1130
2
orx 4y m

oA

e ot ﬂ I ey T

E3 - - = I+ AMLIN = ANIN OA o *® dNLO + dNL=dNL
.le-nz»o (dNL _Az.:uwn(Inx»< ddNL = IdNL V1130 = dviT30 RN |=dINI ||*

O=SEN

dN@D
on ® ® _ @ ® ® ® ” ®

| 4+ SEN=SEN

34Vl
dOLSEN wm!_ o |_ SHTUR — v* 002 a1 09

lyvis
@ TV
8§34

]
@ dN1O SBW  ¢'0-dNL .::._

IdNL=dNL
Z2edINI

OVL3HL = VI3HL
OWHO

oavy

@ uxm-AOOw: *OVL3HL
0= A¥IN

1=730N

I=HIN

I= NN




2. The loop (10, 66, 18) increases TNP until C becomes positive.

3. The loop (10,19, 15 or 17) increases TNP until the values of Z, QARG,
and DARG indicate that the function G (PSIS, PSIO, Z) canbe evaluated. If
Z< ZC, the integration to obtain G can always be performed. If Z> ZC,the
integration encounters the square root of a negative number unless

ARGF (PSIS, Z) is positive and to the left of its minimum (refertodiscussion
surrounding (95)) in which case the derivative DARG of ARGF is negative.
In all other cases, the integration to obtain G is impossible.

4. The loop (10, 16, 22) increases TNP until DELTA, initially negative,
becomes positive. Then, the interpolation routine beginning with state-
ment 25 takes control until the change in TNP becomes lessthan CTNP* TNP.
Once this criterion has been satisfied, the routine beginning at statement

40 calculates a new approximation to # and the program returns to state-
ment 11 to begin calculating the corresponding new value of TNP. However,
if the criterion on 6 (preceding statement 41) has been satisfied, MM is
equal to 2, and the computed GQ TQ preceding 19 transfers control to the
subroutine QUTPUT, which computes additional quantities and writes the
results onto the output tape.

5. The loop (12, 28) deals with cases in which the first value of DELTA
computed is already positive. It decreases TNP by successively smaller
increments until DELTA becomes negative, control returns to statement

10 via 18, or the number of successive passages through 27 becomes

equal to the input value MBSTQP. In this last case, the program prints a
line of output and goes on to the next case according to the DQ loop sequenc-
ing.

6. The loop (12, 21, 26) deals with cases in which control has reached
statement 11 via 42 (i.e., cases in which an improved approximation to
THETA has already been computed), and DELTA comes out positive on the
first new passage through 16. In such cases, the new TNP might be less
than the current value by more than the amount DTNP, and would thus
escape the search carried out by the loop (12, 28). Statement 26 decreases
TNP by DTNP until negative DELTA is obtained or one of the statements
66, 19 returns control to 10. Statement 18 or 22 then resets NTH to 1.

7. FUNCTION G (X0, X1, Z) is equal to the quantity G(X1, Z) minus G (X0, Z)
as defined by (IV-10). Similarly, V(X0, X1, Z) is V(X1,Z) -V(XO0,Z) as de-
fined by (IV-13b). These functions are evaluated simply by Simpson-rule
integration, with accuracy criteria CG and CV, respectively.

8. Subroutine QUTPUT writes the output tape with instructions to print
values of 25 quantities, plus a table giving the distribution of temperature
and certain other quantities along the cathode. The 25 individual quantities
are as follows:
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Sxmbol QuantitY

XI total current (amperes)

TS tip temperature (°K)

XJO0 current density at cold end (amp/ cmz)
Qo0 heat flow at cold end (watts)

Z (91c)

vVC cathode fall (volts)

TN "unperturbed' tip temperature (°K)
XJE current density at hot end (amp/cmz)
QE heat flow into hot end (watts)

PSIS (139c)

VR resistive voltage drop along cathode(volts)
ALPHA (58)

EC field at surface (v/cm)

PJ Joule dissipation (watts)

PSI0 (1394)

VEFF Q0/XI1

XLAMBD A

TNP "unperturbed'' temperature gradient at

surface (°K/cm)

PRAD power radiated from cathode (watts)

ETAS (139b)

VL@SS total power loss from cathode by conduction
and radiation, divided by I (volts)

TAU r

OVERF y0. 5 {(135)

THETA 0 (°K)

C (139f)

9. Subroutine DISTAN calculates the values of n at Y, and at 19 equally
spaced values of ¥ between Yo and ¢s.¢)UTPUT then calculates the distance
from the cold end in centimeters; the temperature (allowing for overflow
effects‘i in °K; and the overflow side heating per unit length (SHPUL), the
radiated heat per unit length (RHPUL), and the Joule heating per unit

length (PHPUL), all in w/cm,

These quantities are printed out as a table.
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